1
|
Latag GV, Nakamura T, Palai D, Mondarte EAQ, Hayashi T. Investigation of Three-Dimensional Bacterial Adhesion Manner on Model Organic Surfaces Using Quartz Crystal Microbalance with Energy Dissipation Monitoring. ACS APPLIED BIO MATERIALS 2023; 6:1185-1194. [PMID: 36802460 PMCID: PMC10031553 DOI: 10.1021/acsabm.2c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Bacterial biofilms reduce the performance and efficiency of biomedical and industrial devices. The initial step in forming bacterial biofilms is the weak and reversible attachment of the bacterial cells onto the surface. This is followed by bond maturation and secretion of polymeric substances, which initiate irreversible biofilm formation, resulting in stable biofilms. This implies that understanding the initial reversible stage of the adhesion process is crucial to prevent bacterial biofilm formation. In this study, we analyzed the adhesion processes of E. coli on self-assembled monolayers (SAMs) with different terminal groups using optical microscopy and quartz crystal microbalance with energy dissipation (QCM-D) monitoring. We found that a considerable number of bacterial cells adhere to hydrophobic (methyl-terminated) and hydrophilic protein-adsorbing (amine- and carboxy-terminated) SAMs forming dense bacterial adlayers while attaching weakly to hydrophilic protein-resisting SAMs [oligo(ethylene glycol) (OEG) and sulfobetaine (SB)], forming sparse but dissipative bacterial adlayers. Moreover, we observed positive shifts in the resonant frequency for the hydrophilic protein-resisting SAMs at high overtone numbers, suggesting how bacterial cells cling to the surface using their appendages as explained by the coupled-resonator model. By exploiting the differences in the acoustic wave penetration depths at each overtone, we estimated the distance of the bacterial cell body from different surfaces. The estimated distances provide a possible explanation for why bacterial cells tend to attach firmly to some surfaces and weakly to others. This result is correlated to the strength of the bacterium-substratum bonds at the interface. Elucidating how the bacterial cells adhere to different surface chemistries can be a suitable guide in identifying surfaces with a more significant probability of contamination by bacterial biofilms and designing bacteria-resistant surfaces and coatings with excellent bacterial antifouling characteristics.
Collapse
Affiliation(s)
- Glenn Villena Latag
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Taichi Nakamura
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Debabrata Palai
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Evan Angelo Quimada Mondarte
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
2
|
Palai D, Tahara H, Chikami S, Latag GV, Maeda S, Komura C, Kurioka H, Hayashi T. Prediction of Serum Adsorption onto Polymer Brush Films by Machine Learning. ACS Biomater Sci Eng 2022; 8:3765-3772. [PMID: 35905395 DOI: 10.1021/acsbiomaterials.2c00441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using machine learning based on a random forest (RF) regression algorithm, we attempted to predict the amount of adsorbed serum protein on polymer brush films from the films' physicochemical information and the monomers' chemical structures constituting the films using a RF model. After the training of the RF model using the data of polymer brush films synthesized from five different types of monomers, the model became capable of predicting the amount of adsorbed protein from the chemical structure, physicochemical properties of monomer molecules, and structural parameters (density and thickness of the films). The analysis of the trained RF quantitatively provided the importance of each structural parameter and physicochemical properties of monomers toward serum protein adsorption (SPA). The ranking for the significance of the parameters agrees with our general understanding and perception. Based on the results, we discuss the correlation between brush film's physical properties (such as thickness and density) and SPA and attempt to provide a guideline for the design of antibiofouling polymer brush films.
Collapse
Affiliation(s)
- Debabrata Palai
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan
| | - Hiroyuki Tahara
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan
| | - Shunta Chikami
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan
| | - Glenn Villena Latag
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan
| | - Shoichi Maeda
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan
| | - Chisato Komura
- Research Institute for Advanced Materials and Devices, Kyocera Corporation, 3-5-3 Hikaridai, Seika-Cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Hideharu Kurioka
- Research Institute for Advanced Materials and Devices, Kyocera Corporation, 3-5-3 Hikaridai, Seika-Cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan.,The Institute for Solid State Physics, the University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| |
Collapse
|
3
|
Mondarte EAQ, Zamarripa EMM, Chang R, Wang F, Song S, Tahara H, Hayashi T. Interphase Protein Layers Formed on Self-Assembled Monolayers in Crowded Biological Environments: Analysis by Surface Force and Quartz Crystal Microbalance Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1324-1333. [PMID: 35029393 DOI: 10.1021/acs.langmuir.1c02312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We investigated a viscous protein layer formed on self-assembled monolayers (SAMs) in crowded biological environments. The results were obtained through force spectroscopic measurements using colloidal probes and substantiated by exhaustive analysis using a quartz crystal microbalance with an energy dissipation technique. A hydrophobic SAM of n-octanethiol (C8 SAM) in bovine serum albumin (BSA) solution is buried under an adlayer of denatured BSA molecules and an additional viscous interphase layer that is five times more viscous than the bulk solution. C8 SAMs in fetal bovine serum induced a formation of a thicker adsorbed protein layer but with no observable viscous interphase layer. These findings show that a fouling surface is essentially inaccessible to any approaching molecules and thus has a new biological and physical identity arising from its surrounding protein layers. In contrast, the SAMs composed of sulfobetaine-terminated alkanethiol proved to be sufficiently protein-resistant and bio-inert even under crowded conditions due to a protective barrier of its interfacial water, which has implications in the accurate targeting of artificial particles for drug delivery and similar applications by screening any non-specific interactions. Finally, our strategies provide a platform for the straightforward yet effectual in vitro characterization of diverse types of surfaces in the context of targeted interactions in crowded biological environments.
Collapse
Affiliation(s)
- Evan Angelo Quimada Mondarte
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Elisa Margarita Mendoza Zamarripa
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Ryongsok Chang
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Fan Wang
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Subin Song
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Hiroyuki Tahara
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Tomohiro Hayashi
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
4
|
Fluorine-containing bio-inert polymers: Roles of intermediate water. Acta Biomater 2022; 138:34-56. [PMID: 34700043 DOI: 10.1016/j.actbio.2021.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Fluorine-containing polymers are used not only in industrial processes but also in medical applications, because they exhibit excellent heat, weather, and chemical resistance. As these polymers are not easily degraded in our body, it is difficult to use them in applications that require antithrombotic properties, such as artificial blood vessels. The material used for medical applications should not only be stable in vivo, but it should also be inert to biomolecules such as proteins or cells. In this review, this property is defined as "bio-inert," and previous studies in this field are summarized. Bio-inert materials are less recognized as foreign substances by proteins or cells in the living body, and they must be covered at interfaces designed with the concept of intermediate water (IW). On the basis of this concept, we present here the current understanding of bio-inertness and unusual blood compatibility found in fluoropolymers used in biomedical applications. IW is the water that interacts with materials with moderate strength and has been quantified by a variety of analytical methods and simulations. For example, by using differential scanning calorimetry (DSC) measurements, IW was defined as water frozen at around -40°C. To consider the role of the IW, quantification methods of the hydration state of polymers are also summarized. These investigations have been conducted independently because of the conflict between hydrophobic fluorine and bio-inert properties that require hydrophilicity. In recent years, not many materials have been developed that incorporate the good points of both aspects, and their properties have seldom been linked to the hydration state. This has been critically performed now. Furthermore, fluorine-containing polymers in medical use are reviewed. Finally, this review also describes the molecular design of the recently reported fluorine-containing bio-inert polymers for controlling their hydration state. STATEMENT OF SIGNIFICANCE: A material covered with a hydration layer known as intermediate water that interacts moderately with other objects is difficult to be recognized as a foreign substance and exhibits bio-inert properties. Fluoropolymers show high durability, but conflict with bio-inert characteristics requiring hydrophilicity as these research studies have been conducted independently. On the other hand, materials that combine the advantages of both hydrophobic and hydrophilic features have been developed recently. Here, we summarize the molecular architecture and analysis methods that control intermediate water and provide a guideline for designing novel fluorine-containing bio-inert materials.
Collapse
|
5
|
Chang R, Quimada Mondarte EA, Palai D, Sekine T, Kashiwazaki A, Murakami D, Tanaka M, Hayashi T. Protein- and Cell-Resistance of Zwitterionic Peptide-Based Self-Assembled Monolayers: Anti-Biofouling Tests and Surface Force Analysis. Front Chem 2021; 9:748017. [PMID: 34692644 PMCID: PMC8527039 DOI: 10.3389/fchem.2021.748017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Peptide-based self-assembled monolayers (peptide-SAMs) with specific zwitterionic amino acid sequences express an anti-biofouling property. In this work, we performed protein adsorption and cell adhesion tests using peptide-SAMs with repeating units of various zwitterionic pairs of amino acids (EK, DK, ER, and DR). The SAMs with the repeating units of EK and DK (EK and DK SAMs) manifested excellent bioinertness, whereas the SAMs with the repeating units of ER and DR (ER and DR SAMs) adhered proteins and cells. We also performed surface force measurements using atomic force microscopy to elucidate the mechanism underlying the difference in the anti-biofouling property. Our measurements revealed that water-induced repulsion with a range of about 8 nm acts between EK SAMs (immobilized on both probe and substrate) and DK SAMs, whereas such repulsion was not observed for ER and DR SAMs. The strength of the repulsion exhibited a clear correlation with the protein- and cell-resistance of the SAMs, indicating that the interfacial water in the vicinity of EK and DK SAMs is considered as a physical barrier to deter protein and cells from their adsorption or adhesion. The range of the repulsion observed for EK and DK SAMs is longer than 8 nm, indicating that the hydrogen bonding state of the interfacial water with a thickness of 4 nm is modified by EK and DK SAMs, resulting in the expression of the anti-biofouling property.
Collapse
Affiliation(s)
- Ryongsok Chang
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Evan Angelo Quimada Mondarte
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Debabrata Palai
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Taito Sekine
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Aki Kashiwazaki
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Daiki Murakami
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Tomohiro Hayashi
- Department of Material Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan.,JST-PRESTO, Saitama, Japan.,The Institute for Solid State Physics, the University of Tokyo, Chiba, Japan
| |
Collapse
|
6
|
Affiliation(s)
- Tomohiro Hayashi
- Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- JST-PRESTO (Materials Informatics), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
7
|
Tanaka M, Morita S, Hayashi T. Role of interfacial water in determining the interactions of proteins and cells with hydrated materials. Colloids Surf B Biointerfaces 2020; 198:111449. [PMID: 33310639 DOI: 10.1016/j.colsurfb.2020.111449] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/09/2020] [Accepted: 11/01/2020] [Indexed: 01/27/2023]
Abstract
Water molecules play a crucial role in biointerfacial interactions, including protein adsorption and desorption. To understand the role of water in the interaction of proteins and cells at biological interfaces, it is important to compare particular states of hydration water with various physicochemical properties of hydrated biomaterials. In this review, we discuss the fundamental concepts for determining the interactions of proteins and cells with hydrated materials along with selected examples corresponding to our recent studies, including poly(2-methoxyethyl acrylate) (PMEA), PMEA derivatives, and other biomaterials. The states of water were analyzed by differential scanning calorimetry, in situ attenuated total reflection infrared spectroscopy, and surface force measurements. We found that intermediate water which is loosely bound to a biomaterial, is a useful indicator of the bioinertness of material surfaces. This finding on intermediate water provides novel insights and helps develop novel experimental models for understanding protein adsorption in a wide range of materials, such as those used in biomedical applications.
Collapse
Affiliation(s)
- Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Shigeaki Morita
- Department of Engineering Science, Osaka Electro-Communication University, 18-8 Hatsucho, Neyagawa, 572-8530, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan; JST-PRESTO, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
8
|
Kwaria RJ, Mondarte EAQ, Tahara H, Chang R, Hayashi T. Data-Driven Prediction of Protein Adsorption on Self-Assembled Monolayers toward Material Screening and Design. ACS Biomater Sci Eng 2020; 6:4949-4956. [DOI: 10.1021/acsbiomaterials.0c01008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rudolf Jason Kwaria
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Evan Angelo Quimada Mondarte
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Hiroyuki Tahara
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Ryongsok Chang
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Japan Science and Technology Agency-Precursory Research for Embryonic Science and Technology (JST-PRESTO), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Sayin M, Nefedov A, Zharnikov M. Interaction of water with oligo(ethylene glycol) terminated monolayers: wetting versus hydration. Phys Chem Chem Phys 2020; 22:8088-8095. [DOI: 10.1039/d0cp00906g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Exposure of biorepulsive, oligo(ethylene glycol) (OEG) substituted self-assembled monolayers to water results in its adsorption both onto the surface and, with a higher binding energy, into the OEG matrix.
Collapse
Affiliation(s)
- Mustafa Sayin
- Applied Physical Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Alexei Nefedov
- Institute of Functional Interfaces
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Michael Zharnikov
- Applied Physical Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| |
Collapse
|
10
|
Proteomic Analysis of Biomaterial Surfaces after Contacting with Body Fluids by MALDI-ToF Mass Spectroscopy. COATINGS 2019. [DOI: 10.3390/coatings10010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We developed a method to identify proteins adsorbed on solid surfaces from a solution containing a complex mixture of proteins by using Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass (MALDI-ToF mass) spectroscopy. In the method, we performed all procedures of peptide mass fingerprint method including denaturation, reduction, alkylation, digestion, and spotting of matrix on substrates. The method enabled us to avoid artifacts of pipetting that could induce changes in the composition. We also developed an algorithm to identify the adsorbed proteins. In this work, we demonstrate the identification of proteins adsorbed on self-assembled monolayers (SAMs). Our results show that the composition of proteins on the SAMs critically depends on the terminal groups of the molecules constituting the SAMs, indicating that the competitive adsorption of protein molecules is largely affected by protein-surface interaction. The method introduced here can provide vital information to clarify the mechanism underlying the responses of cells and tissues to biomaterials.
Collapse
|
11
|
Tanaka M, Kobayashi S, Murakami D, Aratsu F, Kashiwazaki A, Hoshiba T, Fukushima K. Design of Polymeric Biomaterials: The “Intermediate Water Concept”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190274] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumihiro Aratsu
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Aki Kashiwazaki
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Kazuki Fukushima
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
12
|
Sekine T, Kanayama N, Ozasa K, Nyu T, Hayashi T, Maeda M. Stochastic Binding Process of Blunt-End Stacking of DNA Molecules Observed by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15078-15083. [PMID: 30179510 DOI: 10.1021/acs.langmuir.8b02224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrophobic attraction is often a physical origin of nonspecific and irreversible (uncontrollable) processes observed for colloidal and biological systems, such as aggregation, precipitation, and fouling with biomolecules. On the contrary, blunt-end stacking of complementary DNA duplex chain pairs, which is also mainly driven by hydrophobic interaction, is specific and stable enough to lead to self-assemblies of DNA nanostructures. To understand the reason behind these contradicting phenomena, we measured forces operating between two self-assembled monolayers of duplexed DNA molecules with blunt ends (DNA-SAMs) and analyzed their statistics. We found the high specificity and stability of blunt-end stacking that resulted in the high resemblance between the interaction forces measured on approaching and retracting. The other finding is on the stochastic formation process of blunt-end stacking, which appeared as a significant fluctuation of the interaction forces at separations smaller than 2.5 nm. Based on these results, we discuss the underlying mechanism of the specificity and stability of blunt-end stacking.
Collapse
Affiliation(s)
- Taito Sekine
- Department of Materials Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , Kanagawa 226-8502 , Japan
| | - Naoki Kanayama
- Graduate School of Medicine, Science and Technology , Shinshu University , 4-7-1 Wakasato , Nagano , Nagano 380-8553 , Japan
| | | | - Takashi Nyu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , Kanagawa 226-8502 , Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , Kanagawa 226-8502 , Japan
| | | |
Collapse
|
13
|
Araki Y, Sekine T, Chang R, Hayashi T, Onishi H. Molecular-scale structures of the surface and hydration shell of bioinert mixed-charged self-assembled monolayers investigated by frequency modulation atomic force microscopy. RSC Adv 2018; 8:24660-24664. [PMID: 35539204 PMCID: PMC9082155 DOI: 10.1039/c8ra03569e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/25/2018] [Indexed: 11/21/2022] Open
Abstract
We studied the surface structure and hydration structure of a bioinert mix-charged self-assembled monolayer (MC-SAM) comprised of sulfonic acid (SA)- and trimethylamine (TMA)-terminated thiols in liquid by frequency modulation atomic force microscopy (FM-AFM) at a molecular-scale. The TMA end groups showed a highly-ordered rectangular arrangement on a gold substrate in phosphate buffer saline (PBS). Highly structured water was observed at the interface of the MC-SAM and PBS, whereas a less structured hydration structure was observed on bioactive SAMs such as those with OH- and COO- terminal groups. Differences in surface and interface structures between the bioactive and bioinert SAMs suggest that the highly structured water at the bipolar MC-SAM surface works as a physical barrier to prevent adsorption or adhesion of protein and cells. Our results led to the idea that the hydration structure is an important factor in the determination of interactions between SAMs and biomolecules.
Collapse
Affiliation(s)
- Yuki Araki
- Department of Chemistry, School of Science, Kobe University Rokkodai, Nada Kobe Hyogo 657-8501 Japan +81 75 383 2308 +81 75 383 2307
| | - Taito Sekine
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology Nagatsutacho, Midoriku Yokohama Kanagawa 226-8502 Japan
| | - Ryongsok Chang
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology Nagatsutacho, Midoriku Yokohama Kanagawa 226-8502 Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology Nagatsutacho, Midoriku Yokohama Kanagawa 226-8502 Japan
| | - Hiroshi Onishi
- Department of Chemistry, School of Science, Kobe University Rokkodai, Nada Kobe Hyogo 657-8501 Japan +81 75 383 2308 +81 75 383 2307
| |
Collapse
|
14
|
Chang R, Asatyas S, Lkhamsuren G, Hirohara M, Mondarte EAQ, Suthiwanich K, Sekine T, Hayashi T. Water near bioinert self-assembled monolayers. Polym J 2018. [DOI: 10.1038/s41428-018-0075-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
MORITA S. <i>In Situ</i> ATR-IR Spectroscopy Combined with Chemometrics for the Analysis of a Polymer Membrane. BUNSEKI KAGAKU 2018. [DOI: 10.2116/bunsekikagaku.67.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Shigeaki MORITA
- Department of Engineering Science, Osaka Electro-Communication University
| |
Collapse
|
16
|
Hamamoto R, Ito H, Hirohara M, Chang R, Hongo-Hirasaki T, Hayashi T. Interactions between protein molecules and the virus removal membrane surface: Effects of immunoglobulin G adsorption and conformational changes on filter performance. Biotechnol Prog 2017; 34:379-386. [DOI: 10.1002/btpr.2586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/05/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Ryo Hamamoto
- Dept. of Materials Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology, 4259 Nagatsuta-cho; Midori-ku Yokohama 226-8502 Japan
- Technology Development, Bioprocess Division; Asahi Kasei Medical Co., Ltd. 5-4960 Nakagawara-machi; Nobeoka Miyazaki 882-0031 Japan
| | - Hidemi Ito
- Analysis & Simulation Center, Corporate R&D, Asahi Kasei Corporation, 2-1 Samejima; Fuji Shizuoka 416-8501 Japan
| | - Makoto Hirohara
- Dept. of Materials Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology, 4259 Nagatsuta-cho; Midori-ku Yokohama 226-8502 Japan
| | - Ryongsok Chang
- Dept. of Materials Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology, 4259 Nagatsuta-cho; Midori-ku Yokohama 226-8502 Japan
| | - Tomoko Hongo-Hirasaki
- Technology Development, Bioprocess Division; Asahi Kasei Medical Co., Ltd. 5-4960 Nakagawara-machi; Nobeoka Miyazaki 882-0031 Japan
| | - Tomohiro Hayashi
- Dept. of Materials Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology, 4259 Nagatsuta-cho; Midori-ku Yokohama 226-8502 Japan
- Surface and Interface Science Laboratory; RIKEN, 2-1 Hirosawa; Wako Saitama 351-0198 Japan
- JST PRESTO, Kawaguchi-shi; Saitama 332-0012 Japan
| |
Collapse
|
17
|
Matsunaga S, Shimizu H, Yamada T, Kobayashi T, Kawai M. In Situ STM and Vibrational Study of Nanometer-Scale Reorganization of a Phospholipid Monolayer Accompanied by Potential-Driven Headgroup Digestion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13157-13167. [PMID: 28763231 DOI: 10.1021/acs.langmuir.7b01912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In situ dynamic observation of model biological cell membranes, formed on a water/gold substrate interface, has been performed by the combination of electrochemical scanning tunneling microscopy and reflection infrared absorption vibrational spectroscopy. Monolayers of 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) were formed on alkanethiol-modified gold surfaces in a buffer solution, and the microscopic phase transitions driven by electrochemical potential control were observed more in detail than our previous study on the same system [Electrochem. Commun. 2007, 9, 645-650]. This time the transitions were associated with the chemistry of DHPC by the aid of vibrational spectroscopy and the utilization of deuterium-labeled DHPC molecules. A negative potential shift solidifies the fluidic lipid layers into static striped or grainy features without notable chemical reactions. The first positive potential shift over the virginal DHPC monolayer breaks DHPC into choline and the corresponding phosphatidic acid (DHPA). This is the first case of a phospholipid electrochemical reaction microscopically detected at the solid surface.
Collapse
Affiliation(s)
- Soichiro Matsunaga
- Department of Advanced Materials Science, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Hiroaki Shimizu
- Department of Advanced Materials Science, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Taro Yamada
- RIKEN , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- RIKEN , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg , 74 route du Rhin, 67401 Illkirch, France
| | - Maki Kawai
- Department of Advanced Materials Science, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- RIKEN , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|