1
|
Kuru Cİ, Sipahi D, Aydoğan C, Ulucan-Karnak F, Akgöl S. Development of nanobiosensor for therapeutic drug monitoring in personalized cancer treatment approach. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1819-1844. [PMID: 38859628 DOI: 10.1080/09205063.2024.2356965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Docetaxel is one of the most effective and safe chemotherapy drugs according to the World Health Organization, but its clinical use has been discontinued due to its various side effects. To reduce these side effects, the amount of docetaxel drug should be kept at the most effective level, it should be monitored in body fluids. Due to the limitations of traditional analytical methods used for this purpose, such as expensive and low sensitivity, labor-intensive and time-consuming complex preliminary preparation, efficient methods are required for the determination of the docetaxel level in the body. The increasing demand for the development of personalized therapy has recently spurred significant research into biosensors for the detection of drugs and other chemical compounds. In this study, an electrochemical-based portable nanobiosensor system was developed for the rapid, low-cost, and sensitive determination of docetaxel. In this context, mg-p(HEMA)-IMEO nanoparticles to be used as nanobiosensor bioactive layer was synthesized, characterized, and docetaxel determination conditions were optimized. According to the results obtained, the developed nanobiosensor system can detect docetaxel with a sensitivity of 2.22 mg/mL in a wide calibration range of 0.25-10 mg/mL, in only 15 min, in mixed media such as commercially available artificial blood serum and urine. determined. We concluded that the developed nanobiosensor system can be successfully used in routine drug monitoring as a low-cost biomedical device capable of direct, rapid, and specific drug determination within the scope of personalized treatment, providing point-of-care testing.
Collapse
Affiliation(s)
- Cansu İlke Kuru
- Buca Municipality Buca Science and Art Center, Izmir, Turkey
- Faculty of Science, Department of Biochemistry, Ege University, Izmir, Turkey
| | - Deniz Sipahi
- Buca Municipality Buca Science and Art Center, Izmir, Turkey
| | - Ceren Aydoğan
- Buca Municipality Buca Science and Art Center, Izmir, Turkey
| | - Fulden Ulucan-Karnak
- Faculty of Science, Department of Biochemistry, Ege University, Izmir, Turkey
- Health Science Institute, Department of Medical Biochemistry, Ege University, Izmir, Turkey
| | - Sinan Akgöl
- Faculty of Science, Department of Biochemistry, Ege University, Izmir, Turkey
- Nanotechnology Research and Application Center, Sabancı University, Istanbul, Turkey
| |
Collapse
|
2
|
Tzoumani I, Iatridi Z, Fidelli AM, Krassa P, Kallitsis JK, Bokias G. Room-Temperature Self-Healable Blends of Waterborne Polyurethanes with 2-Hydroxyethyl Methacrylate-Based Polymers. Int J Mol Sci 2023; 24:2575. [PMID: 36768898 PMCID: PMC9916575 DOI: 10.3390/ijms24032575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The design of self-healing agents is a topic of important scientific interest for the development of high-performance materials for coating applications. Herein, two series of copolymers of 2-hydroxyethyl methacrylate (HEMA) with either the hydrophilic N,N-dimethylacrylamide (DMAM) or the epoxy group-bearing hydrophobic glycidyl methacrylate were synthesized and studied as potential self-healing agents of waterborne polyurethanes (WPU). The molar percentage of DMAM or GMA units in the P(HEMA-co-DMAMy) and P(HEMA-co-GMAy) copolymers varies from 0% up to 80%. WPU/polymer composites with a 10% w/w or 20% w/w copolymer content were prepared with the facile method of solution mixing. Thanks to the presence of P(HEMA-co-DMAMy) copolymers, WPU/P(HEMA-co-DMAMy) composite films exhibited surface hydrophilicity (water contact angle studies), and tendency for water uptake (water sorption kinetics studies). In contrast, the surfaces of the WPU/P(HEMA-co-GMAy) composites were less hydrophilic compared with the WPU/P(HEMA-co-DMAMy) ones. The room-temperature, water-mediated self-healing ability of these composites was investigated through addition of water drops on the damaged area. Both copolymer series exhibited healing abilities, with the hydrophilic P(HEMA-co-DMAMy) copolymers being more promising. This green healing procedure, in combination with the simple film fabrication process and simple healing triggering, makes these materials attractive for practical applications.
Collapse
Affiliation(s)
- Ioanna Tzoumani
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | | | - Athena M. Fidelli
- Megara Resins Anastassios Fanis S.A., Vathi Avlidas, GR-34100 Evia, Greece
| | - Poppy Krassa
- Megara Resins Anastassios Fanis S.A., Vathi Avlidas, GR-34100 Evia, Greece
| | | | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
3
|
Goumenou A, Delaunay N, Pichon V. Recent Advances in Lectin-Based Affinity Sorbents for Protein Glycosylation Studies. Front Mol Biosci 2021; 8:746822. [PMID: 34778373 PMCID: PMC8585745 DOI: 10.3389/fmolb.2021.746822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023] Open
Abstract
Glycosylation is one of the most significant post-translational modifications occurring to proteins, since it affects some of their basic properties, such as their half-life or biological activity. The developments in analytical methodologies has greatly contributed to a more comprehensive understanding of the quantitative and qualitative characteristics of the glycosylation state of proteins. Despite those advances, the difficulty of a full characterization of glycosylation still remains, mainly due to the complexity of the glycoprotein and/or glycopeptide mixture especially when they are present in complex biological samples. For this reason, various techniques that allow a prior selective enrichment of exclusively glycosylated proteins or glycopeptides have been developed in the past and are coupled either on- or off- line with separation and detection methods. One of the most commonly implemented enrichment methods includes the use of lectin proteins immobilized on various solid supports. Lectins are a group of different, naturally occurring proteins that share a common characteristic, which concerns their affinity for specific sugar moieties of glycoproteins. This review presents the different formats and conditions for the use of lectins in affinity chromatography and in solid phase extraction, including their use in dispersive mode, along with the recent progress made on either commercial or home-made lectin-based affinity sorbents, which can lead to a fast and automated glycosylation analysis.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France.,Sorbonne University, Paris, France
| |
Collapse
|
4
|
Hernandez-Martinez AR. Poly(2-Hydroxyethyl methacrylate-co-N,N-dimethylacrylamide)-Coated Quartz Crystal Microbalance Sensor: Membrane Characterization and Proof of Concept. Gels 2021; 7:151. [PMID: 34698146 PMCID: PMC8544454 DOI: 10.3390/gels7040151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Application-oriented hydrogel properties can be obtained by modifying the synthesis conditions of the materials. The purpose of this study is to achieve customized properties for sensing applications of hydrogel membranes based on poly(2-hydroxyethyl methacrylate), HEMA and N,N-dimethylacrylamide, DMAa. Copolymer p(HEMA-co-DMAa) hydrogels were prepared by varying the DMAa monomer ratio from 0-100% in 20% increments. Hydrogel membranes were characterized by attenuated infrared spectroscopy. Swelling and sorption were evaluated using cation solutions. Copolymers were also synthesized on the gold surface of quartz crystal microbalances (QCM) as coating membranes. A proof of concept was conducted for approaching the design and development of QCM sensors based on P(DMAa-co-HEMA)-membranes. Results showed that the water and ion adsorption capacity of hydrogel membranes increased with higher DMAa content. Membranes are not selective to a specific location but did show different transport features with each cation. The QCM coated with the selected membrane presented linear relationships between resonance frequency and ions concentration in solution (10-120 ppm). As a consequence, hydrogel membranes obtained are promising for the development of future biosensing devices.
Collapse
Affiliation(s)
- Angel Ramon Hernandez-Martinez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Queretaro 76230, Queretaro, Mexico
| |
Collapse
|
5
|
da Silva Junior AG, Frias IAM, Lima-Neto RG, Sá SR, Oliveira MDL, Andrade CAS. Concanavalin A differentiates gram-positive bacteria through hierarchized nanostructured transducer. Microbiol Res 2021; 251:126834. [PMID: 34364021 DOI: 10.1016/j.micres.2021.126834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
Biosensors are pre-prepared diagnostic devices composed of at least one biological probe. These devices are envisaged for the practical identification of specific targets of microbiological interest. In recent years, the use of narrow-specific probes such as lectins has been proven to distinguish bacteria and glycoproteins based on their superficial glycomic pattern. For instance, Concanavalin A is a carbohydrate-binding lectin indicated as a narrow-specific biological probe for Gram-negative bacteria. As a drawback, Gram-positive bacteria are frequently overlooked from lectin-based biosensing studies because their identification results in low resolution and overlapped signals. In this work, the authors explore the effect that platform nanostructuration has over the electrochemical response of ConA-based platforms constructed for bacterial detection; one is formed of chitosan-capped magnetic nanoparticles, and another is composed of gold nanoparticle-decorated magnetic nanoparticles. The biosensing platforms were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) as a function of bacterial concentration. Our results show that probe-target interaction causes variations in the electrical responses of nanostructured transducers. Moreover, the association of gold nanoparticles to magnetic nanoparticles resulted in an electrical enhancement capable of overcoming low resolution and overlapping Gram-positive identification. Both platforms attained a limit of detection of 10 ° CFU mL-1, which is useful for water analyses and sanitation concerns, where low CFU mL-1 are always expected. Although both platforms were able to detect Gram-negative bacteria, Gram-positives were only correctly differentiated by the gold nanoparticle-decorated magnetic nanoparticles, thus demonstrating the positive influence of hierarchically nanostructured platforms.
Collapse
Affiliation(s)
- Alberto G da Silva Junior
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Isaac A M Frias
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Reginaldo G Lima-Neto
- Centro de Ciências da Saúde, Departamento de Medicina Tropical, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Sandra R Sá
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| |
Collapse
|
6
|
Akgöl S, Ulucan-Karnak F, Kuru Cİ, Kuşat K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol Bioeng 2021; 118:2906-2922. [PMID: 34050923 DOI: 10.1002/bit.27843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology is still developing over the decades and it is commonly used in biomedical applications with the design of nanomaterials due to the several purposes. With the investigation of materials on the molecular level has increased the develop composite nanomaterials with exceptional properties using in different applications and industries. The application of these composite nanomaterials is widely used in the fields of textile, chemical, energy, defense industry, electronics, and biomedical engineering which is growing and developing on human health. Development of biosensors for the diagnosis of diseases, drug targeting and controlled release applications, medical implants and imaging techniques are the research topics of nanobiotechnology. In this review, overview of the development of nanotechnology and applications which is use of composite nanomaterials in biomedical engineering is provided.
Collapse
Affiliation(s)
- Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | | | - Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | - Kevser Kuşat
- Department of Chemistry, Faculty of Science, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
7
|
A New Nanomaterial Based Biosensor for MUC1 Biomarker Detection in Early Diagnosis, Tumor Progression and Treatment of Cancer. ACTA ACUST UNITED AC 2021. [DOI: 10.3390/nanomanufacturing1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early detection of cancer disease is vital to the successful treatment, follow-up and survival of patients, therefore sensitive and specific methods are still required. Mucin 1 (MUC1) is a clinically approved biomarker for determining the cancer that is a type I transmembrane protein with a dense glycosylated extracellular domain extending from the cell surface to 200–500 nm. In this study, nanopolymers were designed with a lectin affinity-based recognition system for MUC1 detection as a bioactive layer on electrochemical biosensor electrode surfaces. They were synthesized using a mini emulsion polymerization method and derivatized with triethoxy-3-(2-imidazolin-1-yl) propylsilane (IMEO) and functionalized with Concanavalin a Type IV (Con A) lectin. Advanced characterization studies of nanopolymers were performed. The operating conditions of the sensor system have been optimized. Biosensor validation studies were performed. Real sample blood serum was analyzed and this new method compared with a commercially available medical diagnostic kit (Enzyme-Linked ImmunoSorbent Assay-ELISA). The new generation nanopolymeric material has been shown to be an affordable, sensitive, reliable and rapid device with 0.1–100 U/mL linear range and 20 min response time.
Collapse
|
8
|
Nadar S, Shooter G, Somasundaram B, Shave E, Baker K, Lua LHL. Intensified Downstream Processing of Monoclonal Antibodies Using Membrane Technology. Biotechnol J 2020; 16:e2000309. [PMID: 33006254 DOI: 10.1002/biot.202000309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The need to intensify downstream processing of monoclonal antibodies to complement the advances in upstream productivity has led to increased attention toward implementing membrane technologies. With the industry moving toward continuous operations and single use processes, membrane technologies show promise in fulfilling the industry needs due to their operational flexibility and ease of implementation. Recently, the applicability of membrane-based unit operations in integrating the downstream process has been explored. In this article, the major developments in the application of membrane-based technologies in the bioprocessing of monoclonal antibodies are reviewed. The recent progress toward developing intensified end-to-end bioprocesses and the critical role membrane technology will play in achieving this goal are focused upon.
Collapse
Affiliation(s)
- Sathish Nadar
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| | - Gary Shooter
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| | - Balaji Somasundaram
- Protein Expression Facility, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| | - Evan Shave
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia.,Pharma services group, Thermo Fisher Scientific, 37 Kent St, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Kym Baker
- Pharma services group, Thermo Fisher Scientific, 37 Kent St, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Linda H L Lua
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia.,Protein Expression Facility, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
9
|
Yazdi MK, Vatanpour V, Taghizadeh A, Taghizadeh M, Ganjali MR, Munir MT, Habibzadeh S, Saeb MR, Ghaedi M. Hydrogel membranes: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111023. [PMID: 32994021 DOI: 10.1016/j.msec.2020.111023] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Hydrogel membranes (HMs) are defined and applied as hydrated porous media constructed of hydrophilic polymers for a broad range of applications. Fascinating physiochemical properties, unique porous architecture, water-swollen features, biocompatibility, and special water content dependent transport phenomena in semi-permeable HMs make them appealing constructs for various applications from wastewater treatment to biomedical fields. Water absorption, mechanical properties, and viscoelastic features of three-dimensional (3D) HM networks evoke the extracellular matrix (ECM). On the other hand, the porous structure with controlled/uniform pore-size distribution, permeability/selectivity features, and structural/chemical tunability of HMs recall membrane separation processes such as desalination, wastewater treatment, and gas separation. Furthermore, supreme physiochemical stability and high ion conductivity make them promising to be utilised in the structure of accumulators such as batteries and supercapacitors. In this review, after summarising the general concepts and production processes for HMs, a comprehensive overview of their applications in medicine, environmental engineering, sensing usage, and energy storage/conservation is well-featured. The present review concludes with existing restrictions, possible potentials, and future directions of HMs.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Iran, Tehran.
| | - Ali Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohsen Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Kuwait; Department of Chemical and Materials Engineering, The University of Auckland, New Zealand
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| |
Collapse
|
10
|
Bresolin ITL, Bresolin IRAP, Bueno SMA. Evaluation of Iminodiacetic Acid (IDA) as an Ionogenic Group for Adsorption of IgG 1 Monoclonal Antibodies by Membrane Chromatography. Appl Biochem Biotechnol 2019; 191:810-823. [PMID: 31863350 DOI: 10.1007/s12010-019-03217-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022]
Abstract
Iminodiacetic acid (IDA) is one of the chelating ligands most frequently employed in immobilized metal-ion affinity chromatography (IMAC) due to its ability to act as electron-pair donor, forming stable complexes with intermediate and borderline Lewis metal ions (electron acceptor). Thus, IDA can also be employed in ion exchange chromatography to purify positively charged proteins at neutral pH values. This study aimed to evaluate IDA as an ionogenic group (ion exchanger) immobilized on poly (ethylene vinyl alcohol) (PEVA) hollow fiber membranes for immunoglobulin G1 (IgG1) monoclonal antibody (MAb) purification. IDA-PEVA membranes showed considerable promise for MAb purification, since IgG1 was recovered in eluted fractions with traces of contaminants as confirmed by Western blotting and ELISA analysis. Quantification of IgG1 showed that a purity of 94.2% was reached in the elution step. Breakthrough curve and batch adsorption experiments showed that the MAb dynamic binding capacity (DBC) of 3.10 mg g-1 and the maximum adsorption capacity of 70 mg g-1 were of the same order of magnitude as those found in the literature. The results obtained showed that the IDA-PEVA hollow fiber membrane could be a powerful adsorbent for integrating large-scale processes for purification of MAb from cell culture supernatant.
Collapse
Affiliation(s)
| | | | - Sônia Maria Alves Bueno
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| |
Collapse
|