1
|
Kérourédan O, Washio A, Handschin C, Devillard R, Kokabu S, Kitamura C, Tabata Y. Bioactive gelatin-sheets as novel biopapers to support prevascularization organized by laser-assisted bioprinting for bone tissue engineering. Biomed Mater 2024; 19:025038. [PMID: 38324892 DOI: 10.1088/1748-605x/ad270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Despite significant advances in the management of patients with oral cancer, maxillofacial reconstruction after ablative surgery remains a clinical challenge. In bone tissue engineering, biofabrication strategies have been proposed as promising alternatives to solve issues associated with current therapies and to produce bone substitutes that mimic both the structure and function of native bone. Among them, laser-assisted bioprinting (LAB) has emerged as a relevant biofabrication method to print living cells and biomaterials with micrometric resolution onto a receiving substrate, also called 'biopaper'. Recent studies have demonstrated the benefits of prevascularization using LAB to promote vascularization and bone regeneration, but mechanical and biological optimization of the biopaper are needed. The aim of this study was to apply gelatin-sheet fabrication process to the development of a novel biopaper able to support prevascularization organized by LAB for bone tissue engineering applications. Gelatin-based sheets incorporating bioactive glasses (BGs) were produced using various freezing methods and crosslinking (CL) parameters. The different formulations were characterized in terms of microstructural, physical, mechanical, and biological properties in monoculture and coculture. Based on multi-criteria analysis, a rank scoring method was used to identify the most relevant formulations. The selected biopaper underwent additional characterization regarding its ability to support mineralization and vasculogenesis, its bioactivity potential andin vivodegradability. The biopaper 'Gel5wt% BG1wt%-slow freezing-CL160 °C 24 h' was selected as the best candidate, due to its suitable properties including high porosity (91.69 ± 1.55%), swelling ratio (91.61 ± 0.60%), Young modulus (3.97 × 104± 0.97 × 104Pa) but also its great cytocompatibility, osteogenesis and bioactivity properties. The preorganization of human umbilical vein endothelial cell using LAB onto this new biopaper led to the formation of microvascular networks. This biopaper was also shown to be compatible with 3D-molding and 3D-stacking strategies. This work allowed the development of a novel biopaper adapted to LAB with great potential for vascularized bone biofabrication.
Collapse
Affiliation(s)
- Olivia Kérourédan
- INSERM, U1026 BIOTIS, University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
- Faculty of Dentistry, University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
- CHU de Bordeaux, Pôle de Médecine et Chirurgie bucco-dentaire, Place Amélie Raba Léon, Bordeaux 33076, France
- CHU de Bordeaux, CCMR MOC-Maladies Osseuses Constitutionnelles, Place Amélie Raba Léon, Bordeaux 33076, France
- CHU de Bordeaux, CCMR O-Rares-Maladies Rares Orales et Dentaires, Place Amélie Raba Léon, Bordeaux 33076, France
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Charles Handschin
- ART BioPrint, INSERM, U1026 BIOTIS, University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
| | - Raphaël Devillard
- INSERM, U1026 BIOTIS, University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
- Faculty of Dentistry, University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
- CHU de Bordeaux, Pôle de Médecine et Chirurgie bucco-dentaire, Place Amélie Raba Léon, Bordeaux 33076, France
- CHU de Bordeaux, CCMR MOC-Maladies Osseuses Constitutionnelles, Place Amélie Raba Léon, Bordeaux 33076, France
- CHU de Bordeaux, CCMR O-Rares-Maladies Rares Orales et Dentaires, Place Amélie Raba Léon, Bordeaux 33076, France
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Washio A, Kérourédan O, Tabata Y, Kokabu S, Kitamura C. Effect of Bioactive Glasses and Basic Fibroblast Growth Factor on Dental Pulp Cells. J Funct Biomater 2023; 14:568. [PMID: 38132822 PMCID: PMC10744375 DOI: 10.3390/jfb14120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Ideal regeneration of hard tissue and dental pulp has been reported with the use of a combination of bioactive glass and basic fibroblast growth factor (bFGF). However, no previous study has investigated the molecular mechanisms underlying the processes induced by this combination in dental pulp cells. This study aimed to examine the cellular phenotype and transcriptional changes induced by the combination of bioactive glass solution (BG) and bFGF in dental pulp cells using phase-contrast microscopy, a cell counting kit-8 assay, alkaline phosphatase staining, and RNA sequence analysis. bFGF induced elongation of the cell process and increased the number of cells. Whereas BG did not increase ALP activity, it induced extracellular matrix-related genes in the dental pulp. In addition, the combination of BG and bFGF induces gliogenesis-related genes in the nervous system. This is to say, bFGF increased the viability of dental pulp cells, bioactive glass induced odontogenesis, and a dual stimulation with bioactive glass and bFGF induced the wound healing of the nerve system in the dental pulp. Taken together, bioactive glass and bFGF may be useful for the regeneration of the dentin-pulp complex.
Collapse
Affiliation(s)
- Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| | - Olivia Kérourédan
- National Institute of Health and Medical Research (INSERM), U1026 BIOTIS, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France;
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| |
Collapse
|
3
|
Duncan HF, Kobayashi Y, Kearney M, Shimizu E. Epigenetic therapeutics in dental pulp treatment: Hopes, challenges and concerns for the development of next-generation biomaterials. Bioact Mater 2023; 27:574-593. [PMID: 37213443 PMCID: PMC10199232 DOI: 10.1016/j.bioactmat.2023.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
This opinion-led review paper highlights the need for novel translational research in vital-pulp-treatment (VPT), but also discusses the challenges in translating evidence to clinics. Traditional dentistry is expensive, invasive and relies on an outmoded mechanical understanding of dental disease, rather than employing a biological perspective that harnesses cell activity and the regenerative-capacity. Recent research has focussed on developing minimally-invasive biologically-based 'fillings' that preserve the dental pulp; research that is shifting the paradigm from expensive high-technology dentistry, with high failure rates, to smart restorations targeted at biological processes. Current VPTs promote repair by recruiting odontoblast-like cells in a material-dependent process. Therefore, exciting opportunities exist for development of next-generation biomaterials targeted at regenerative processes in the dentin-pulp complex. This article analyses recent research using pharmacological-inhibitors to therapeutically-target histone-deacetylase (HDAC) enzymes in dental-pulp-cells (DPCs) that stimulate pro-regenerative effects with limited loss of viability. Consequently, HDAC-inhibitors have the potential to enhance biomaterial-driven tissue responses at low concentration by influencing the cellular processes with minimal side-effects, providing an opportunity to develop a topically-placed, inexpensive bio-inductive pulp-capping material. Despite positive results, clinical translation of these innovations requires enterprise to counteract regulatory obstacles, dental-industry priorities and to develop strong academic/industry partnerships. The aim of this opinion-led review paper is to discuss the potential role of therapeutically-targeting epigenetic modifications as part of a topical VPT strategy in the treatment of the damaged dental pulp, while considering the next steps, material considerations, challenges and future for the clinical development of epigenetic therapeutics or other 'smart' restorations in VPT.
Collapse
Affiliation(s)
- Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Lincoln Place, Dublin, Ireland
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Lincoln Place, Dublin, Ireland
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
4
|
Pourmadadi M, Aslani A, Abdouss M. Synthesis and characterization of biological macromolecules double emulsion based on carboxymethylcellulose/gelatin hydrogel incorporated with ZIF-8 as metal organic frameworks for sustained anti-cancer drug release. Int J Biol Macromol 2023:125168. [PMID: 37270138 DOI: 10.1016/j.ijbiomac.2023.125168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
The field of nanotechnology has introduced novel prospects for drug delivery systems, which have the potential to supplant conventional chemotherapy with reduced adverse effects. Despite being a promising porous material, ZIF-8, a metal-organic framework, tends to agglomerate in water, which limits its applicability. In order to resolve this problem, we added ZIF-8 to hydrogels consisting of gelatin and carboxymethylcellulose. This improved their mechanical strength and stability while avoiding aggregation. We utilized double emulsions with the hydrogels' biological macromolecules to construct drug carriers with enhanced control over drug release. The nanocarriers were subjected to various analytical techniques for characterization, such as Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), zeta potential, and dynamic light scattering (DLS). The findings of our study revealed that the mean size of the produced nanocarriers were 250 nm, and their zeta potential was -40.1 mV, which suggests favorable stability. The synthesized nanocarriers were found to exhibit cytotoxicity towards cancer cells, as evidenced by the results of MTT assays and flow cytometry tests. The cell viability percentage was determined to be 55 % for the prepared nanomedicine versus 70 % for the free drug. In summary, our study illustrates that the integration of ZIF-8 into hydrogels produces drug delivery systems with improved characteristics. Furthermore, the prepared nanocarriers exhibit potential for future investigation and advancement.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Aslani
- Chemistry Department, Amirkabir University of Technology
| | - Majid Abdouss
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Vojtová L, Pavliňáková V, Muchová J, Kacvinská K, Brtníková J, Knoz M, Lipový B, Faldyna M, Göpfert E, Holoubek J, Pavlovský Z, Vícenová M, Blahnová VH, Hearnden V, Filová E. Healing and Angiogenic Properties of Collagen/Chitosan Scaffolds Enriched with Hyperstable FGF2-STAB ® Protein: In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation. Biomedicines 2021; 9:590. [PMID: 34067330 PMCID: PMC8224647 DOI: 10.3390/biomedicines9060590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Wound healing is a process regulated by a complex interaction of multiple growth factors including fibroblast growth factor 2 (FGF2). Although FGF2 appears in several tissue engineered studies, its applications are limited due to its low stability both in vitro and in vivo. Here, this shortcoming is overcome by a unique nine-point mutant of the low molecular weight isoform FGF2 retaining full biological activity even after twenty days at 37 °C. Crosslinked freeze-dried 3D porous collagen/chitosan scaffolds enriched with this hyper stable recombinant human protein named FGF2-STAB® were tested for in vitro biocompatibility and cytotoxicity using murine 3T3-A31 fibroblasts, for angiogenic potential using an ex ovo chick chorioallantoic membrane assay and for wound healing in vivo with 3-month old white New Zealand rabbits. Metabolic activity assays indicated the positive effect of FGF2-STAB® already at very low concentrations (0.01 µg/mL). The angiogenic properties examined ex ovo showed enhanced vascularization of the tested scaffolds. Histological evaluation and gene expression analysis by RT-qPCR proved newly formed granulation tissue at the place of a previous skin defect without significant inflammation infiltration in vivo. This work highlights the safety and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® protein. Moreover, these sponges could be used as scaffolds for growing cells for dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration.
Collapse
Affiliation(s)
- Lucy Vojtová
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
| | - Veronika Pavliňáková
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
| | - Johana Muchová
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
| | - Katarína Kacvinská
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
| | - Jana Brtníková
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
| | - Martin Knoz
- Faculty of Medicine, Department of Burns and Plastic Surgery, Institution Shared with the University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (J.H.)
- Clinic of Plastic and Esthetic Surgery, St Anne’s University Hospital, 602 00 Brno, Czech Republic
| | - Břetislav Lipový
- CEITEC–Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (L.V.); (J.M.); (K.K.); (J.B.); (B.L.)
- Faculty of Medicine, Department of Burns and Plastic Surgery, Institution Shared with the University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (J.H.)
| | - Martin Faldyna
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.F.); (E.G.); (M.V.)
| | - Eduard Göpfert
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.F.); (E.G.); (M.V.)
| | - Jakub Holoubek
- Faculty of Medicine, Department of Burns and Plastic Surgery, Institution Shared with the University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (J.H.)
| | - Zdeněk Pavlovský
- Faculty of Medicine, Institute of Pathology, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic;
| | - Monika Vícenová
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.F.); (E.G.); (M.V.)
| | - Veronika Hefka Blahnová
- Institute of Experimental Medicine of the Czech Academy of Science, 142 20 Prague, Czech Republic; (V.H.B.); (E.F.)
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK;
| | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Science, 142 20 Prague, Czech Republic; (V.H.B.); (E.F.)
| |
Collapse
|
6
|
Benington L, Rajan G, Locher C, Lim LY. Fibroblast Growth Factor 2-A Review of Stabilisation Approaches for Clinical Applications. Pharmaceutics 2020; 12:E508. [PMID: 32498439 PMCID: PMC7356611 DOI: 10.3390/pharmaceutics12060508] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Basic fibroblast growth factor (FGF)-2 has been shown to regulate many cellular functions including cell proliferation, migration, and differentiation, as well as angiogenesis in a variety of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve. These multiple functions make FGF-2 an attractive component for wound healing and tissue engineering constructs; however, the stability of FGF-2 is widely accepted to be a major concern for the development of useful medicinal products. Many approaches have been reported in the literature for preserving the biological activity of FGF-2 in aqueous solutions. Most of these efforts were directed at sustaining FGF-2 activity for cell culture research, with a smaller number of studies seeking to develop sustained release formulations of FGF-2 for tissue engineering applications. The stabilisation approaches may be classified into the broad classes of ionic interaction modification with excipients, chemical modification, and physical adsorption and encapsulation with carrier materials. This review discusses the underlying causes of FGF-2 instability and provides an overview of the approaches reported in the literature for stabilising FGF-2 that may be relevant for clinical applications. Although efforts have been made to stabilise FGF-2 for both in vitro and in vivo applications with varying degrees of success, the lack of comprehensive published stability data for the final FGF-2 products represents a substantial gap in the current knowledge, which has to be addressed before viable products for wider tissue engineering applications can be developed to meet regulatory authorisation.
Collapse
Affiliation(s)
- Leah Benington
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (L.B.); (C.L.)
| | - Gunesh Rajan
- Division of Surgery, School of Medicine, University of Western Australia, Crawley 6009, Australia;
- Department of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, 6000 Luzern, Switzerland
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (L.B.); (C.L.)
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (L.B.); (C.L.)
| |
Collapse
|