1
|
Marcolino LMC, Ambrosio JA, Pinto JG, Ferreira I, Simioni AR, Ferreira-Strixino J. Photodynamic therapy of cationic and anionic BSA-curcumin nanoparticles on amastigotes of Leishmania braziliensis and Leishmania major and Leishmania amazonensis. Photodiagnosis Photodyn Ther 2024; 46:104001. [PMID: 38342387 DOI: 10.1016/j.pdpdt.2024.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Cutaneous leishmaniasis is a neglected disease prevalent in tropical countries, and conventional treatment can cause several serious side effects. Photodynamic therapy (PDT) can be considered a promising treatment alternative, as it is non-invasive therapy that has no side effects and uses accessible and low-cost substances, such as curcumin. This study evaluated the PDT response with cationic and anionic BSA nanoparticles encapsulated with curcumin in macrophages infected with L. braziliensis, L. major, and L. amazonensis. The nanoparticle system was characterized using a steady-state technique, scanning electron microscopy (SEM) study, and its biological activity was evaluated using macrophage cell lines infected with different Leishmania species. All spectroscopy measurements demonstrated that BSA curcumin (BSACur) has good photophysical properties, and confocal microscopy shows that macrophages and protozoa internalized the nanoparticles. The viability test demonstrated that at low concentrations, such as 0.1, 0.7, and 1.0 µmol. L-1, there was a decrease in cell viability after PDT application. Furthermore, a decrease in the number of parasites recovered was observed in the PDT groups. The results allowed us to conclude that curcumin loaded into BSA nanoparticles may have potential application in drug delivery systems for PDT protocols, demonstrating reduced cell viability at lower concentrations than free curcumin.
Collapse
Affiliation(s)
- Luciana Maria Cortez Marcolino
- Photobiology Applied to Health (PhotoBioS Lab) - Research and Development Institute - IPD - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil
| | - Jessica Ar Ambrosio
- Micro and Nanoparticle Systems Laboratory - Research and Development Institute - IPD - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health (PhotoBioS Lab) - Research and Development Institute - IPD - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil
| | - Isabelle Ferreira
- Photobiology Applied to Health (PhotoBioS Lab) - Research and Development Institute - IPD - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil
| | - Andreza R Simioni
- Micro and Nanoparticle Systems Laboratory - Research and Development Institute - IPD - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health (PhotoBioS Lab) - Research and Development Institute - IPD - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil.
| |
Collapse
|
2
|
Qiao W, Zhang P, Jiang N, Zhang S, Bai H, Xie L, Sun L, Wang X. Albumin nanostructure assisted ABZ anti-parasite immune therapy for T. spiralis muscle infection. BIOMATERIALS ADVANCES 2023; 150:213434. [PMID: 37087912 DOI: 10.1016/j.bioadv.2023.213434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Currently, the treatment of Trichinella spiralis (T. spiralis) intracellular infection by oral administration of albendazole (ABZ) is hampered by its poor aqueous solubility and rapid metabolism. Herein, the nanoparticles with BSA and ABZ (ABZ-BSA Nps) were constructed by a desolvation technique in the study. The anti-parasite activity and pharmacokinetics of ABZ-BSA Nps were evaluated for T. spiralis muscle larvae during the encysted phase. The immune-responsive cytokines of ABZ-BSA Nps were quantitatively analyzed. The results showed that ABZ-BSA Nps could eliminate the muscle larvae by triggering the unbalance of Th1/Th2 immune-response in the infection mice. For ABZ-BSA Nps treatment group, the plasma concentration of ABZSO (ABZ active metabolite) was higher than ABZ and the muscle larvae were reduced by 70.2 %. In conclusion, the study had constructed a successful prospective protein nanoparticle delivery ABZ and evidenced the ABZ could be used for intracellular parasite therapy by triggering the anti-parasite immunity of hosts.
Collapse
Affiliation(s)
- Weidong Qiao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Peng Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China; Electron Microscope Center, Jilin University, Changchun 130012, PR China
| | - Ning Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Shuyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Huifang Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lingfeng Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lin Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Xuelin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
3
|
Zamani M, Aghajanzadeh M, Jashnani S, Darvishzad S, Khoramabadi H, Shirin Shahangian S, Shirini F. Combination of chemo and photo dynamic therapy using pH triggered bio-coated spinels for treatment of breast cancer. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Ambrósio JAR, Pinto BCS, Marmo VLM, Santos KWD, Junior MB, Pinto JG, Ferreira-Strixino J, Raniero LJ, Simioni AR. Synthesis and characterization of photosensitive gelatin-based hydrogels for photodynamic therapy in HeLa-CCL2 cell line. Photodiagnosis Photodyn Ther 2022; 38:102818. [PMID: 35331952 DOI: 10.1016/j.pdpdt.2022.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hydrogel systems are increasingly gaining visibility involving biomedicine, tissue engineering, environmental treatments, and drug delivery systems. These systems have a three-dimensional network composition and high-water absorption capacity, are biocompatible, allowing them to become an option as photosensitizer carriers (PS) for applications in Photodynamic Therapy (PDT) protocols. METHODS A nanohydrogel system (NAHI), encapsulated with chloroaluminium phthalocyanine (ClAlPc) was synthesized for drug delivery.. NAHI was synthesized using gelatin as based polymer by the chemical cross-linking technique. The drug was encapsulated by immersing the hydrogel in a 1.0 mg.mL-1 ClAlPc solution. The external morphology of NAHI was examined by scanning electron microscopy (SEM). The degree of swelling of the synthesized system was evaluated to determine the water absorption potential. The produced nanohydrogel system was characterized by photochemical, photophysical and photobiologial studies. RESULTS The images from the SEM analysis showed the presence of three-dimensional networks in the formulation. The swelling test demonstrated that the nanohydrogel freeze-drying process increases its water holding capacity. All spectroscopic results showed excellent photophysical parameters of the drug studied when served in the NAHI system. The incorporation efficiency was 70%. The results of trypan blue exclusion test have shown significant reduction (p < 0.05) in the cell viability for all groups treated with PDT, in all concentrations tested. In HeLa cells, PDT mediated by 0,5 mg.mL-1 ClAlPc encapsulated in NAHI showed a decrease in survival close to 95%. In the internalization cell study was possible to observe the internalization of phthalocyanine after one hour of incubation, at 37 °C, with the the accumulation of PS in the cytoplasm and inside the nucleus at both concentrations tested. CONCLUSIONS Given the peculiar performance of the selected system, the resulting nanohydrogel is a versatile platform and display potential applications as controlled delivery systems of photosensitizer for photodynamic therapy application.
Collapse
Affiliation(s)
- Jéssica A R Ambrósio
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Bruna C S Pinto
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Vitor Luca Moura Marmo
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Kennedy Wallace Dos Santos
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Milton Beltrame Junior
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Juliana G Pinto
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Juliana Ferreira-Strixino
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Leandro José Raniero
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil
| | - Andreza R Simioni
- Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, 2911., São José dos Campos, SP CEP 12244-000, Brazil.
| |
Collapse
|
5
|
Tiwari R, Viswanathan K, Gour V, Vyas SP, Soni V. Cisplatin-loaded albumin nanoparticle and study their internalization effect by using β-cyclodextrin. J Recept Signal Transduct Res 2020; 41:393-400. [PMID: 32900251 DOI: 10.1080/10799893.2020.1817077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The present study with aim at enhancing the therapeutic and anti-cancer properties of cisplatin (CPT)-loaded bovine serum albumin (BSA) nanoparticles. The BSA nanoparticles containing CPT (CPT-BSANPs) were successfully prepared by the desolvation technique. The physicochemical characterization of the CPT-BSANPs were used by Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The particle size of CPT-BSANPs was found less than 200 nm with 75.02 ± 0.15% entrapment efficiency (EE), while zeta potential and PDI were -17.6 mV and 0.2, respectively. In vitro release behavior of the CPT from the carrier suggests that about 64% of the drug gets released after 48 hrs. The anti-cancer activities of the CPT-BSANPs were tested on MCF-7 cell lines. Our studies show that CPT-BSANPs nanoparticles showed specific targeting and enhanced cytotoxicity to MCF-7 cells when compared to the bare CPT. Thus results suggest that CPT-BSANPs fallowed caveolae-mediated endocytosis, it may become better option for intracellular delivery of anticancer drug.
Collapse
Affiliation(s)
- Rahul Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Kaliyaperumal Viswanathan
- Translational Research Platform for Veterinary Biologicals (TRPVB), Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Vishal Gour
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Suresh Prasad Vyas
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| |
Collapse
|
6
|
Ambrósio JAR, Pinto BCDS, da Silva BGM, Passos JCDS, Beltrame Junior M, Costa MS, Simioni AR. BSA nanoparticles loaded-methylene blue for photodynamic antimicrobial chemotherapy (PACT): effect on both growth and biofilm formation by Candida albicans. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2182-2198. [DOI: 10.1080/09205063.2020.1795461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | - Milton Beltrame Junior
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| | - Andreza Ribeiro Simioni
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| |
Collapse
|
7
|
Wang K, Zhang J, de Sousa Júnior WT, da Silva VCM, Rodrigues MC, Morais JAV, Jiang C, Longo JPF, Azevedo RB, Muehlmann LA. A xanthene derivative, free or associated to nanoparticles, as a new potential agent for anticancer photodynamic therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1977-1993. [DOI: 10.1080/09205063.2020.1788370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Kaiming Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
- Faculty of Ceilandia, University of Brasília, Brasilia, Brazil
| | | | | | - Mosar Correa Rodrigues
- Faculty of Ceilandia, University of Brasília, Brasilia, Brazil
- Institute of Biological Sciences, University of Brasília, Brasilia, Brazil
| | - José Athayde Vasconcelos Morais
- Faculty of Ceilandia, University of Brasília, Brasilia, Brazil
- Institute of Biological Sciences, University of Brasília, Brasilia, Brazil
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | | | | | | |
Collapse
|
8
|
Mazzilli MRF, Ambrósio JAR, da Silva Godoy D, da Silva Abreu A, Carvalho JA, Junior MB, Simioni AR. Polyelectrolytic BSA nanoparticles containing silicon dihydroxide phthalocyanine as a promising candidate for drug delivery systems for anticancer photodynamic therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1457-1474. [PMID: 32326844 DOI: 10.1080/09205063.2020.1760702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently several scientific-technological advances in the health area have developed. Among them, we can highlight research addressing nanoscience and nanotechnology focusing on the development of formulations for the cancer treatment. This work describes the synthesis and characterization of bovine serum albumin (BSA) polyelectrolytic nanoparticles for controlled release using silicon dihydroxide phthalocyanine [SiPc (OH)2] as a photosensitizer model for application in Photodynamic Therapy (PDT). BSA nanoparticles were prepared by the one-step desolvation process and the nanoparticulate system was coated with polyelectrolytes using poly-(4-styrene sulfonate - PSS) as a strong polyanion and polyallylamine hydrochloride (PAH) as a weak polycation by the technique self-assembling layer-by-layer (LbL). The formulation was characterized and available in cellular culture. The profile of drug release was investigated and compared to that of free [SiPc (OH)2]. The nanoparticles have a mean diameter of 226.9 nm, a narrow size distribution with polydispersive index of 0.153, smooth surface and spherical shape. [SiPc(OH)2] loaded nanoparticles maintain its photophysical behaviour after encapsulation. The polyelectrolytic nanoparticles improved efficiency in release and photocytotoxicity assay when compared to pure drug. The results demonstrate that photosensitizer adsorption on BSA nanoparticles together with biopolymer layer-by-layer assembly provides a way to manufacture biocompatible nanostructured materials that are intended for use as biomaterials for Photodynamic Therapy applications.
Collapse
Affiliation(s)
- Mariana Ribeiro Farah Mazzilli
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| | | | - Daniele da Silva Godoy
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| | - Alexandro da Silva Abreu
- Departament of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine (CNET), University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Janicy Arantes Carvalho
- Departament of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine (CNET), University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Milton Beltrame Junior
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| | - Andreza Ribeiro Simioni
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| |
Collapse
|