1
|
Du M, Zhang J, Jin J, Jiang W. Constructing a Photothermal and Quaternary Ammonium Cation Bactericidal Platform onto SEBS for Synergistic Therapy. ACS Biomater Sci Eng 2023; 9:6103-6111. [PMID: 37874178 DOI: 10.1021/acsbiomaterials.3c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) with eminent elasticity, thermoplastic ability, and biological stability has aroused great interest in the medical area. However, bacteria can easily adhere to the hydrophobic SEBS surface to cause medical device-related infections. In this work, SEBS is modified to prepare the SEBS-polydopamine (PDA)-poly(lysine) quaternary ammonium derivative (PLQ) antibacterial surface by PDA deposition and surface grafting techniques to solve bacterial infections. PDA is used as an intermediate layer and presents an excellent photothermal effect. The grafted polymer PLQ has antimicrobial quaternary ammonium cation groups, which plays synergistic bactericidal therapy with PDA. The SEBS-PDA-PLQ surface almost totally suppresses the growth of bacteria with a surface bacterial survival rate of 0.05% under laser irradiation. The outstanding antibacterial activity of the SEBS-PDA-PLQ surface is attributed to the synergistic effects of the photothermal performance of PDA and quaternary ammonium cationic functional groups of PLQ. In addition, the membrane SEBS-PDA-PLQ shows good hydrophilicity, antiprotein adsorption ability, chemical stability, and biocompatibility. This antibiotic-free antimicrobial approach has great potential for practical application in solving infections associated with medical devices.
Collapse
Affiliation(s)
- Min Du
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jianing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Ishihara K, Shi X, Fukazawa K, Yamaoka T, Yao G, Wu JY. Biomimetic-Engineered Silicone Hydrogel Contact Lens Materials. ACS APPLIED BIO MATERIALS 2023; 6:3600-3616. [PMID: 37616500 PMCID: PMC10521029 DOI: 10.1021/acsabm.3c00296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Contact lenses are one of the most successful applications of biomaterials. The chemical structure of the polymers used in contact lenses plays an important role in determining the function of contact lenses. Different types of contact lenses have been developed based on the chemical structure of polymers. When designing contact lenses, materials scientists consider factors such as mechanical properties, processing properties, optical properties, histocompatibility, and antifouling properties, to ensure long-term wear with minimal discomfort. Advances in contact lens materials have addressed traditional issues such as oxygen permeability and biocompatibility, improving overall comfort, and duration of use. For example, silicone hydrogel contact lenses with high oxygen permeability were developed to extend the duration of use. In addition, controlling the surface properties of contact lenses in direct contact with the cornea tissue through surface polymer modification mimics the surface morphology of corneal tissue while maintaining the essential properties of the contact lens, a significant improvement for long-term use and reuse of contact lenses. This review presents the material science elements required for advanced contact lenses of the future and summarizes the chemical methods for achieving these goals.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Xinfeng Shi
- Alcon
Research, LLC, Fort Worth, Texas 76134, United States
| | - Kyoko Fukazawa
- National
Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Tetsuji Yamaoka
- National
Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - George Yao
- Alcon
Research, LLC, Duluth, Georgia 30097, United States
| | | |
Collapse
|
3
|
Chen L, Yu Q, Jia Y, Xu M, Wang Y, Wang J, Wen T, Wang L. Micro-and-nanometer topological gradient of block copolymer fibrous scaffolds towards region-specific cell regulation. J Colloid Interface Sci 2021; 606:248-260. [PMID: 34390992 DOI: 10.1016/j.jcis.2021.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
Regulating cell behavior and function by surface topography has drawn significant attention in tissue engineering. Herein, a gradient fibrous scaffold comprising anisotropic aligned fibers and isotropic annealed fibers was developed to provide a controllable direction of cell migration, adhesion, and spreading. The electrospun aligned fibers were engraved to create surface gradients with micro-and-nanometer roughness through block copolymer (BCP) self-assembly induced by selective solvent vapor annealing (SVA). The distinct manipulation of cell behavior by annealed fibrous scaffolds with tailored self-assembled nanostructure and welded fibrous microstructure has been illustrated by in situ/ex situ small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and in vitro cell culture. Further insights into the effect of integrated gradient fibrous scaffold were gained at the level of protein expression. From the perspective of gradient topology, this region-specific scaffold based on BCP fibers shows the prospect of guiding cell migration, adhesion and spreading and provides a generic method for designing biomaterials for tissue-engineering.
Collapse
Affiliation(s)
- Lei Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Yifan Jia
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mengmeng Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yingying Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jing Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Linge Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Zhang Y, Kang K, Zhu N, Li G, Zhou X, Zhang A, Yi Q, Wu Y. Bottlebrush-like highly efficient antibacterial coating constructed using α-helical peptide dendritic polymers on the poly(styrene- b-(ethylene- co-butylene)- b-styrene) surface. J Mater Chem B 2021; 8:7428-7437. [PMID: 32662494 DOI: 10.1039/d0tb01336f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infectious diseases induced by pathogenic bacteria are the major causes for the failure of medical implants. Meanwhile, the drug-resistance is steadily developed because of the large and even inappropriate use of antibiotics. Therefore, the development of antibacterial coating with non-antibiotic-based agents on the surfaces of medical implants and devices has been an urgent need. Herein, we propose a bottlebrush-like antibacterial coating on a poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) triblock copolymer surface by UV-induced graft polymerization of poly(ethylene glycol) (PEG) acrylate terminated poly(lysine dendrimer). This PEG-conjugated antibacterial polymer possessed a substructure of α-helical backbone and cation dendrimer side chains stretching in the radial directions of the helix. The introduction of lysine peptide dendrimers endowed the prepared antibacterial polymer with precisely controlled characteristics of its local cation density, amphipathic composition as well as three-dimensional (3D) conformation to improve interactions with bacterial membranes. The antimicrobial assay and biocompatibility assay results showed that 96.83% of S. aureus and 99.99% of E. coli were killed after being in contact with the antibacterial coating, while no toxicity to mammalian cells or no hemolysis was detected. This antimicrobial activity was further confirmed by the molecular dynamics simulation results, which demonstrated that the employment of lysine peptide dendrimers enhanced the electrostatic interaction and hydrogen bonding between the brush and bacterial membranes remarkably. Such bottlebrush-like antibacterial coating constructed using α-helical peptide dendritic polymers may become an effective strategy for manufacturing antibacterial products for biomedical uses.
Collapse
Affiliation(s)
- Yujia Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Surface modification by poly(ethylene glycol) with different end-grafted groups: Experimental and theoretical study. Biointerphases 2021; 16:021002. [PMID: 33726496 DOI: 10.1116/6.0000647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dihydroxyphenylalanine (DOPA) is extensively reported to be a surface-independent anchor molecule in bioadhesive surface modification and antifouling biomaterial fabrication. However, the mechanisms of DOPA adsorption on versatile substrates and the comparison between experimental results and theoretical results are less addressed. We report the adsorption of DOPA anchored monomethoxy poly(ethylene glycol) (DOPA-mPEG) on substrates and surface wettability as well as antifouling property in comparison with thiol and hydroxyl anchored mPEG (mPEG-SH and mPEG-OH). Gold and hydroxylated silicon were used as model substrates to study the adsorptions of mPEGs. The experimental results showed that the DOPA-mPEG showed higher affinity to both gold and silicon wafers, and the DOPA-mPEG modified surfaces had higher resistance to protein adsorption than those of mPEG-SH and mPEG-OH. It is revealed that the surface wettability is primary for surface fouling, while polymer flexibility is the secondary parameter. We present ab initio calculations of the adsorption of mEGs with different end-functionalities on Au and hydroxylated silicon wafer (Si-OH), where the binding energies are obtained. It is established that monomethoxy ethylene glycol (mEG) with DOPA terminal DOPA-mEG is clearly favored for the adsorption with both gold and Si-OH surfaces due to the bidentate Au-O interactions and the bidentate O-H bond interactions, in agreement with experimental evidence.
Collapse
|
6
|
Tsai BH, Lin TA, Cheng CH, Lin JC. Studies of the Sulfonated Hydrogenated Styrene-Isoprene-Styrene Block Copolymer and Its Surface Properties, Cytotoxicity, and Platelet-Contacting Characteristics. Polymers (Basel) 2021; 13:polym13020235. [PMID: 33445549 PMCID: PMC7828018 DOI: 10.3390/polym13020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/21/2022] Open
Abstract
Styrenic thermoplastic elastomers (TPEs) consist of styrenic blocks. They are connected with other soft segments by a covalent linkage and are widely used in human life. However, in biomedical applications, TPEs need to be chemically hydrogenated in advance to enhance their properties such as strong UV/ozone resistance and thermal-oxidative stability. In this study, films composed of sulfonated hydrogenated TPEs were evaluated. Hydrogenated tert-butyl styrene–styrene–isoprene block copolymers were synthesized and selectively sulfonated to different degrees by reaction with acetyl sulfate. By controlling the ratio of the hydrogenated tert-butyl styrene–styrene–isoprene block copolymer and acetyl sulfate, sulfonated films were optimized to demonstrate sufficient mechanical integrity in water as well as good biocompatibility. The thermal plastic sulfonated films were found to be free of cytotoxicity and platelet-compatible and could be potential candidates in biomedical film applications such as wound dressings.
Collapse
Affiliation(s)
- Bin-Hong Tsai
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (B.-H.T.); (T.-A.L.)
| | - Tse-An Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (B.-H.T.); (T.-A.L.)
| | - Chi-Hui Cheng
- Department of Pediatrics, College of Medicine, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (C.-H.C.); (J.-C.L.)
| | - Jui-Che Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (B.-H.T.); (T.-A.L.)
- Correspondence: (C.-H.C.); (J.-C.L.)
| |
Collapse
|
7
|
Mayuri PV, Bhatt A, Parameswaran R. Investigation of the potency of leukodepletion filter membranes immobilized with bovine serum albumin via polydopamine spacer. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03515-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|