1
|
Zhuang S, Jin X, Cen L, Shao Y. Encapsulation of hydroxycamptothecin within porous and hollow poly(L-lactide- co-ε-caprolactone) microspheres as a floating delivery system for intravesical instillation. Biomater Sci 2024; 12:3659-3671. [PMID: 38860438 DOI: 10.1039/d4bm00618f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Intravesical instillation is an effective post-treatment for bladder cancer performed by delivering medications directly into the bladder to target the remaining cancer cells. The current study thus aimed to develop porous poly(L-lactide-co-ε-caprolactone) (PLCL) microspheres encapsulated with 10-hydroxycamptothecin (HCPT) via microfluidics to serve as a drug delivery system with persistent floating capacity and sustained HCPT-release property for intravesical instillation. A microfluidic device was designed to fabricate PLCL microspheres and encapsulate HCPT (HCPT-MS) within them; methanol and tridecane were introduced into an oil phase as a co-solvent and pore-forming agent, respectively, to regulate the floating ability of microspheres. The physicochemical properties of the resulting microspheres were characterized, and the floating behavior, release profile and anti-tumor effects of HCPT-MS were investigated. The obtained spherical HCPT-MS were 119.23 μm in size, monodisperse, and featured a porous concave surface and hollow structure. The encapsulation efficiency and drug loading of HCPT within HCPT-MS was around 67% and 4.9%, respectively. HCPT-MS exhibited impressive floating capabilities in water, PBS and artificial urine even in a simulated bladder dynamic environment. These microspheres remained afloat after being subjected to 90 repeated simulated urination processes. The sustained release of HCPT from these floating microspheres lasted for more than 10 days. The IC50 (half maximal inhibitory concentration) of HCPT-MS was calculated to be 52.14 μg mL-1. T24 cells (human bladder cancer cells) when cultured with HCPT-MS at such a concentration were severely inhibited, and the inhibition further enhanced with an increase in culture time. Hence, the feasibility of the current porous and floating HCPT-MS as a formulation for intravesical instillation to deliver medications into the bladder with sustained release and stability was thus substantiated.
Collapse
Affiliation(s)
- Shiya Zhuang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai, 200237, China.
| | - Xingwei Jin
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No. 130 Mei Long Road, Shanghai, 200237, China.
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| |
Collapse
|
2
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
3
|
Wang S, Downing G, Olsen KF, Sawyer TK, Cone RD, Schwendeman SP. Aqueous remote loading of setmelanotide in poly(lactic-co-glycolic acid) microspheres for long-term obesity treatment. J Control Release 2023; 364:589-600. [PMID: 37678438 DOI: 10.1016/j.jconrel.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Setmelanotide (Imcivree™) was developed as a daily injectable therapeutic peptide for the treatment of rare forms of syndromic obesity, such as POMC deficiency and leptin receptor deficiency. The important option of poly(lactic-co-glycolic acid) (PLGA) controlled release microspheres has become more attractive for this class of drugs upon the discovery that net positively charged peptides can be remote-loaded rapidly from aqueous peptide solution into blank microspheres at high loading and encapsulation efficiency. Here we sought to remote-load setmelanotide in PLGA microspheres and examine its potential for long-term controlled release and body weight control. The influence of PLGA microsphere porosity was investigated with respect to morphology, drug loading, and in vitro release profiles. Increased density of the microspheres inhibited the progress of encapsulation of the dicationic peptide. A diet-induced obese murine model was then used to determine the pharmacokinetic profile and to evaluate long-term efficacy of an optimal formulation. Remote loaded PLGA formulations encapsulated setmelanotide as high as ∼63% (∼6.3% w/w loading) and exhibited slow and continuous peptide release over ∼6 weeks in vitro largely independent of microsphere porosity. The obtained in vivo release pattern from deconvolution of the pharmacokinetics after subcutaneous microsphere injection was consistent with the in vitro release profile but with a lower initial burst release and overall slightly faster release rate. After a single injection of remote-loaded setmelanotide, continuous long-term inhibition of food intake and body weight control was observed over 17 and 30 days, respectively. The improvement in body weight control over drug-free microsphere vehicle-treated control groups matched the observed PK profile. This study provides the first report of long-acting release formulation for 1-month controlled release of setmelanotide and body weight control in a diet induced obese murine model, and supports the further development of long-acting treatment options for obese patients.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Griffin Downing
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karl F Olsen
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | | | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Lee J, Sah H. Preparation of PLGA Nanoparticles by Milling Spongelike PLGA Microspheres. Pharmaceutics 2022; 14:pharmaceutics14081540. [PMID: 35893796 PMCID: PMC9330877 DOI: 10.3390/pharmaceutics14081540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Currently, emulsification-templated nanoencapsulation techniques (e.g., nanoprecipitation) have been most frequently used to prepare poly-d,l-lactide-co-glycolide (PLGA) nanoparticles. This study aimed to explore a new top-down process to produce PLGA nanoparticles. The fundamental strategy was to prepare spongelike PLGA microspheres with a highly porous texture and then crush them into submicron-sized particles via wet milling. Therefore, an ethyl formate-based ammonolysis method was developed to encapsulate progesterone into porous PLGA microspheres. Compared to a conventional solvent evaporation process, the ammonolysis technique helped reduce the tendency of drug crystallization and improved drug encapsulation efficiency accordingly (solvent evaporation, 27.6 ± 4.6%; ammonolysis, 65.1 ± 1.7%). Wet milling was performed on the highly porous microspheres with a D50 of 64.8 μm under various milling conditions. The size of the grinding medium was the most crucial factor for our wet milling. Milling using smaller zirconium oxide beads (0.3~1 mm) was simply ineffective. However, when larger beads with diameters of 3 and 5 mm were used, our porous microspheres were ground into submicron-sized particles. The quality of the resultant PLGA nanoparticles was demonstrated by size distribution measurement and field emission scanning electron microscopy. The present top-down process that contrasts with conventional bottom-up approaches might find application in manufacturing drug-loaded PLGA nanoparticles.
Collapse
|
5
|
Gil CJ, Li L, Hwang B, Cadena M, Theus AS, Finamore TA, Bauser-Heaton H, Mahmoudi M, Roeder RK, Serpooshan V. Tissue engineered drug delivery vehicles: Methods to monitor and regulate the release behavior. J Control Release 2022; 349:143-155. [PMID: 35508223 DOI: 10.1016/j.jconrel.2022.04.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022]
Abstract
Tissue engineering is a rapidly evolving, multidisciplinary field that aims at generating or regenerating 3D functional tissues for in vitro disease modeling and drug screening applications or for in vivo therapies. A variety of advanced biological and engineering methods are increasingly being used to further enhance and customize the functionality of tissue engineered scaffolds. To this end, tunable drug delivery and release mechanisms are incorporated into tissue engineering modalities to promote different therapeutic processes, thus, addressing challenges faced in the clinical applications. In this review, we elaborate the mechanisms and recent developments in different drug delivery vehicles, including the quantum dots, nano/micro particles, and molecular agents. Different loading strategies to incorporate the therapeutic reagents into the scaffolding structures are explored. Further, we discuss the main mechanisms to tune and monitor/quantify the release kinetics of embedded drugs from engineered scaffolds. We also survey the current trend of drug delivery using stimuli driven biopolymer scaffolds to enable precise spatiotemporal control of the release behavior. Recent advancements, challenges facing current scaffold-based drug delivery approaches, and areas of future research are discussed.
Collapse
Affiliation(s)
- Carmen J Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Lan Li
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Andrea S Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Tyler A Finamore
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Sibley Heart Center at Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48864, USA
| | - Ryan K Roeder
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Muddineti OS, Omri A. Current trends in PLGA based long-acting injectable products: The industry perspective. Expert Opin Drug Deliv 2022; 19:559-576. [PMID: 35534912 DOI: 10.1080/17425247.2022.2075845] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Poly (lactic-co-glycolic acid) (PLGA) has been used in many long-acting drug formulations, which have been approved by the US Food and Drug Administration (FDA). PLGA has unique physicochemical properties, which results in complexities in the formulation, characterization, and evaluation of generic products. To address the challenges of generic development of PLGA-based products, the FDA has established an extensive research program to investigate novel methods and tools to aid product development and regulatory review. AREAS COVERED This review article intends to provide a comprehensive review on physicochemical properties of PLGA polymer, characterization, formulation, and analytical aspects, manufacturing conditions on product performance, in-vitro release testing, and bioequivalence. Current research on formulation development as per QbD in vitro release testing methods, regulatory research outcomes, and bioequivalence. EXPERT OPINION The development of PLGA based long-acting injectables is promising and challenging when considering the numerous interrelated delivery-related factors. Achieving a successful formulation requires a thorough understanding of the critical interactions between polymer/drug properties, release profiles over time, up-to-date knowledge on regulatory guidance, and elucidation of the impact of multiple in vivo conditions to methodically evaluate the eventual clinical efficacy.
Collapse
Affiliation(s)
- Omkara Swami Muddineti
- Formulation Research & Development, Vimta Labs Limited, Plot No.5, M N Park, Genome Valley, Shameerpet, Hyderabad, Telangana, 500101, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
7
|
Sustained Release of Risedronate from PLGA Microparticles Embedded in Alginate Hydrogel for Treatment of Bony Lesions. IRANIAN BIOMEDICAL JOURNAL 2022; 26:124-31. [PMID: 35090303 PMCID: PMC8987410 DOI: 10.52547/ibj.26.2.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. ALG and PLGA microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of risedronate from PLGA microparticles embedded with ALG was studied as a drug delivery system for sustained release of the drug, which can be used in local administrations. Methods: Risedronate-containing PLGA microparticles were fabricated using double emulsion solvent evaporation technique. Ionic cross-linking method was used to fabricate risedronate-loaded ALG. Risedronate-containing PLGA microparticles were then coated with ALG. The calibration curve of risedronate was traced to measure EE and study the release pattern. SEM imaging was carried out, and cell toxicity was examined using MTT assay. Statistical analysis of data was carried out using SPSS ver. 20 software, via one-way ANOVA and Tukey’s tests. Results: SEM imaging showed open porosities on ALGs. The mean EE of PLGA microparticles for risedronate was 57.14 ± 3.70%. Risedronate released completely after 72 h from ALG, and the cumulative release was significantly higher (p = 0.000) compared to PLGA microspheres coated with ALG, which demonstrated sustained released of risedronate until day 28. Risedronate-loaded ALG showed a significant decrease in gingival fibroblasts cell viability (p < 0.05). Conclusion: Alginate-coated PLGA microspheres could release risedronate in a sustained and controlled way and also did not show cell toxicity. Therefore, they seem to be an appropriate system for risedronate delivery in local applications.
Collapse
|
8
|
Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021; 174:425-446. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The design of smart drug delivery carriers has recently attracted great attention in the biomedical field. Smart carriers can specifically respond to physical and chemical changes in their environment, such as temperature, photoirradiation, ultrasound, magnetic field, pH, redox species, and biomolecules. This review summarizes recent advances in the integration of porous particles and stimuli-responsive gatekeepers for effective drug delivery. Their unique structural properties play an important role in facilitating the diffusion of drug molecules and cell attachment. Various techniques for fabricating porous materials, with their major advantages and limitations, are summarized. Smart gatekeepers provide advanced functions such as "open-close" switching by functionalized stimuli-responsive polymers on a particle's pores. These controlled delivery systems enable drugs to be targeted at specific rates, time programs, and sites of the human body. The gate structures, gating mechanisms, and controlled release mechanisms of each trigger are detailed. Current ongoing research and future trends in targeted drug delivery, tissue engineering, and regenerative medicine applications are highlighted.
Collapse
|
9
|
Engineering microenvironment of biodegradable polyester systems for drug stability and release control. Ther Deliv 2021; 12:37-54. [PMID: 33397135 DOI: 10.4155/tde-2020-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polymeric systems made of poly(lactic acid) or poly(lactic-co-glycolic acid) are widely used for long-term delivery of small and large molecules. The advantages of poly(lactic acid)/poly(lactic-co-glycolic acid) systems include biodegradability, safety and a long history of use in US FDA-approved products. However, as drugs delivered by the polymeric systems and their applications become more diverse, the significance of microenvironment change of degrading systems on long-term drug stability and release kinetics has gained renewed attention. In this review, we discuss various issues experienced with acidifying microenvironment of biodegradable polymer systems and approaches to overcome the detrimental effects of polymer degradation on drug stability and release control.
Collapse
|
10
|
Yoo J, Won YY. Phenomenology of the Initial Burst Release of Drugs from PLGA Microparticles. ACS Biomater Sci Eng 2020; 6:6053-6062. [PMID: 33449671 DOI: 10.1021/acsbiomaterials.0c01228] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is the most prevalent polymer drug delivery vehicle in use today. There are about 20 commercialized drug products in which PLGA is used as an excipient. In more than half of these formulations, PLGA is used in the form of microparticles (with sizes in the range between 60 nm and 100 μm). The primary role of PLGA is to control the kinetics of drug release toward achieving sustained release of the drug. Unfortunately, most drug-loaded PLGA microparticles exhibit a common drawback: an initial uncontrolled burst of the drug. After 30 years of utilization of PLGA in controlled drug delivery systems, this initial burst drug release still remains an unresolved challenge. In this Review, we present a summary of the proposed mechanisms responsible for this phenomenon and the known factors affecting the burst release process. Also, we discuss examples of recent efforts made to reduce the initial burst release of the drug from PLGA particles.
Collapse
Affiliation(s)
- Jin Yoo
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States of America
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States of America.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906, United States of America
| |
Collapse
|
11
|
Kaplan MA, Sergienko KV, Kolmakova AA, Konushkin SV, Baikin AS, Kolmakov AG, Sevostyanov MA, Kulikov AV, Ivanov VE, Belosludtsev KN, Antipov SS, Volkov MY, Shusharina NN, Karaduleva EV, Kozlov VA, Simakin AV, Gudkov SV. Development of a Biocompatible PLGA Polymers Capable to Release Thrombolytic Enzyme Prourokinase. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1405-1420. [PMID: 32323635 DOI: 10.1080/09205063.2020.1760699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The novelty of the work lies in the creation and study of the physical and biological properties of biodegradable polymer coatings for stents based on poly(lactic-co-glycolic acid) (PLGA). Polymer coatings are capable of prolonged and directed release of molecules with a high molecular weight, in particular, protein molecules of prourokinase (m.w. 54 kDa). A technology has been developed to create coatings having a relative elongation of 40% to 165% and a tensile strength of 25-65 MPa. Coatings are biodegradable; the rate of degradation of the polymer in an isotonic solution varies in the range of 0.05%-1.0% per day. The created coatings are capable of controlled release of the protein of prourokinase, while about 90% of the molecules of prourokinase retain their enzymatic activity. The rate of release of prourokinase can vary from 0.01 to 0.08 mg/day/cm2. Coatings do not have a short-term toxic effect on mammalian cells. The mitotic index of cells growing on coatings is approximately 1.5%. When implanting the developed polymers in animals in the postoperative period, there are no complications. Histological examination did not reveal pathological processes. When implanting individual polymers 60 days after surgery, only traces of PLGA are detected. Thus, a biodegradable composite mechanically resistant polymer capable of prolonged release of the high molecular weight prourokinase enzyme has been developed.
Collapse
Affiliation(s)
- Mikhail A Kaplan
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Konstantin V Sergienko
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasia A Kolmakova
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Konushkin
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Baikin
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey G Kolmakov
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia.,Institute of Strength Physics and Materials Science of the Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
| | - Mikhail A Sevostyanov
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Kulikov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Vladimir E Ivanov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Konstantin N Belosludtsev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia.,Mari State University, Yoshkar-Ola, Mari El, Russia
| | - Sergey S Antipov
- K.G. Razumovsky Moscow State University of technologies and management (the First Cossack University), Moscow, Russia
| | | | | | - Elena V Karaduleva
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Valery A Kozlov
- Bauman Moscow State Technical University, Moscow, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|