1
|
Kouhjani M, Jaafari MR, Kamali H, Abbasi A, Tafaghodi M, Mousavi Shaegh SA. Microfluidic-assisted preparation of PLGA nanoparticles loaded with insulin: a comparison with double emulsion solvent evaporation method. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:306-329. [PMID: 38100556 DOI: 10.1080/09205063.2023.2287247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Poly lactic-co-glycolic acid (PLGA) is an ideal polymer for the delivery of small and macromolecule drugs. Conventional preparation methods of PLGA nanoparticles (NPs) result in poor control over NPs properties. In this research, a microfluidic mixer was designed to produce insulin-loaded PLGA NPs with tuned properties. Importantly; aggregation of the NPs through the mixer was diminished due to the coaxial mixing of the precursors. The micromixer allowed for the production of NPs with small size and narrow size distribution compared to the double emulsion solvent evaporation (DESE) method. Furthermore, encapsulation efficiency and loading capacity indicated a significant increase in optimized NPs produced through the microfluidic method in comparison to DESE method. NPs prepared by the microfluidic method were able to achieve a more reduction of trans-epithelial electrical resistance values in the Caco-2 cells compared to those developed by the DESE technique that leads to greater paracellular permeation. Compatibility and interaction between components were evaluated by differential scanning calorimetry and fourier transform infrared analysis. Also, the effect of NPs on cell toxicity was investigated using MTT test. Numerical simulations were conducted to analyze the effect of mixing patterns on the properties of the NPs. It was revealed that by decreasing flow rate ratio, i.e. flow rate of the organic phase to the flow rate of the aqueous phase, mixing of the two streams increases. As an alternative to the DESE method, high flexibility in modulating hydrodynamic conditions of the microfluidic mixer allowed for nanoassembly of NPs with superior insulin encapsulation at smaller particle sizes.
Collapse
Affiliation(s)
- Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology and Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Abbasi
- Laboratory of Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology and Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Alsaab HO, Alharbi FD, Alhibs AS, Alanazi NB, Alshehri BY, Saleh MA, Alshehri FS, Algarni MA, Almugaiteeb T, Uddin MN, Alzhrani RM. PLGA-Based Nanomedicine: History of Advancement and Development in Clinical Applications of Multiple Diseases. Pharmaceutics 2022; 14:pharmaceutics14122728. [PMID: 36559223 PMCID: PMC9786338 DOI: 10.3390/pharmaceutics14122728] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Research on the use of biodegradable polymers for drug delivery has been ongoing since they were first used as bioresorbable surgical devices in the 1980s. For tissue engineering and drug delivery, biodegradable polymer poly-lactic-co-glycolic acid (PLGA) has shown enormous promise among all biomaterials. PLGA are a family of FDA-approved biodegradable polymers that are physically strong and highly biocompatible and have been extensively studied as delivery vehicles of drugs, proteins, and macromolecules such as DNA and RNA. PLGA has a wide range of erosion times and mechanical properties that can be modified. Many innovative platforms have been widely studied and created for the development of methods for the controlled delivery of PLGA. In this paper, the various manufacturing processes and characteristics that impact their breakdown and drug release are explored in depth. Besides different PLGA-based nanoparticles, preclinical and clinical applications for different diseases and the PLGA platform types and their scale-up issues will be discussed.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
- Correspondence: ; Tel.: +966-556047523
| | - Fatima D. Alharbi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanoud S. Alhibs
- Department of Pharmacy, King Fahad Medical City, Riyadh 11564, Saudi Arabia
| | - Nouf B. Alanazi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bayan Y. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Majed A. Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Turki Almugaiteeb
- Taqnia-Research Products Development Company, Riyadh 13244, Saudi Arabia
| | | | - Rami M. Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
Kaya S, Kondolot Solak E. Development of ketorolac tromethamine loaded biocompatible polymeric microspheres and matrix films: designing for topical application. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Seçil Kaya
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
- Department of Material and Material Processing Technologies, Technical Sciences Vocational School, Gazi University, Ankara, Turkey
| | - Ebru Kondolot Solak
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
- Department of Chemistry and Chemical Processing Technologies, Technical Sciences Vocational School, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Glass Transition Temperature of PLGA Particles and the Influence on Drug Delivery Applications. Polymers (Basel) 2022; 14:polym14050993. [PMID: 35267816 PMCID: PMC8912735 DOI: 10.3390/polym14050993] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/31/2022] Open
Abstract
Over recent decades, poly(lactic-co-glycolic acid) (PLGA) based nano- and micro- drug delivery vehicles have been rapidly developed since PLGA was approved by the Food and Drug Administration (FDA). Common factors that influence PLGA particle properties have been extensively studied by researchers, such as particle size, polydispersity index (PDI), surface morphology, zeta potential, and drug loading efficiency. These properties have all been found to be key factors for determining the drug release kinetics of the drug delivery particles. For drug delivery applications the drug release behavior is a critical property, and PLGA drug delivery systems are still plagued with the issue of burst release when a large portion of the drug is suddenly released from the particle rather than the controlled release the particles are designed for. Other properties of the particles can play a role in the drug release behavior, such as the glass transition temperature (Tg). The Tg, however, is an underreported property of current PLGA based drug delivery systems. This review summarizes the basic knowledge of the glass transition temperature in PLGA particles, the factors that influence the Tg, the effect of Tg on drug release behavior, and presents the recent awareness of the influence of Tg on drug delivery applications.
Collapse
|
5
|
Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management. Drug Dev Res 2021; 83:301-316. [PMID: 34859477 DOI: 10.1002/ddr.21903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/30/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is one of the most serious public health problems in the world. Repeated daily injections of subcutaneous insulin is the standard treatment for patients with type 1 diabetes mellitus; however, subcutaneous insulin injections can potentially cause local discomfort, patient noncompliance, hypoglycemia, failure to regulate glucose homeostasis, infections, and fat deposits at the injection sites. In recent years, numerous attempts have been made to produce safe and efficient nanoparticles for oral insulin delivery. Oral administration is considered the most effective alternative route to insulin injection, but it is accompanied by several challenges related to enzymatic proteolysis, digestive breakdown, and absorption barriers. A number of natural and synthetic polymeric, lipid-based, and inorganic nanoparticles have been investigated for use. Although improvements have recently been made in potential oral insulin delivery systems, these require further investigation before clinical trials are conducted. In this review, new approaches to oral insulin delivery for diabetes treatment are discussed, including polymeric, lipid-based, and inorganic nanoparticles, as well as the clinical trials performed for this purpose.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa Ramadan
- Histology and Molecular Cytology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Manouchehri S, Zarrintaj P, Saeb MR, Ramsey JD. Advanced Delivery Systems Based on Lysine or Lysine Polymers. Mol Pharm 2021; 18:3652-3670. [PMID: 34519501 DOI: 10.1021/acs.molpharmaceut.1c00474] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polylysine and materials that integrate lysine form promising drug delivery platforms. As a cationic macromolecule, a polylysine polymer electrostatically interacts with cells and is efficiently internalized, thereby enabling intracellular delivery. Although polylysine is intrinsically pH-responsive, the conjugation with different functional groups imparts smart, stimuli-responsive traits by adding pH-, temperature-, hypoxia-, redox-, and enzyme-responsive features for enhanced delivery of therapeutic agents. Because of such characteristics, polylysine has been used to deliver various cargos such as small-molecule drugs, genes, proteins, and imaging agents. Furthermore, modifying contrast agents with polylysine has been shown to improve performance, including increasing cellular uptake and stability. In this review, the use of lysine residues, peptides, and polymers in various drug delivery systems has been discussed comprehensively to provide insight into the design and robust manufacturing of lysine-based delivery platforms.
Collapse
Affiliation(s)
- Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | | | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| |
Collapse
|