1
|
Cao H, Zeng Y, Yuan X, Wang JK, Tay CY. Waste-to-resource: Extraction and transformation of aquatic biomaterials for regenerative medicine. BIOMATERIALS ADVANCES 2025; 166:214023. [PMID: 39260186 DOI: 10.1016/j.bioadv.2024.214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized. In this review, we present a comprehensive overview of technology-enabled methods for extracting and transforming aquatic waste into valuable biomaterials and their recent advances in regenerative medicine applications, focusing on marine collagen, chitin/chitosan, calcium phosphate and bioactive-peptides. We discuss the inherent bioactive qualities of these "waste-to-resource" aquatic biomaterials and identify opportunities for their use in regenerative medicine to advance healthcare while achieving the Sustainable Development Goals.
Collapse
Affiliation(s)
- Huaqi Cao
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Yuanjin Zeng
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Xueyu Yuan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Center for Sustainable Materials (SusMat), Nanyang Technological University, Singapore 637553, Singapore; Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore.
| |
Collapse
|
2
|
Shaik MI, Rahman SHA, Yusri AS, Ismail-Fitry MR, Kumar NSS, Sarbon NM. A review on the processing technique, physicochemical, and bioactive properties of marine collagen. J Food Sci 2024; 89:5205-5229. [PMID: 39126690 DOI: 10.1111/1750-3841.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Collagens are conventionally derived from bovine and porcine sources. However, these sources were commonly associated with infectious diseases such as bovine spongiform encephalopathy, foot and mouth disease, autoimmune and allergic reactions, and religious constraints. The significant amount of collagen available in marine species, especially fish skins, scales, fins, and bones, shows that marine species can be a potential alternative source to mammalian collagen. Therefore, this review aims to give a clearer outlook on the processing techniques of marine collagen and its physicochemical and bioactive properties as a potential alternative to mammalian collagen. The two most suitable extraction methods for marine collagen are pepsin-soluble extraction and ultrasound-assisted extraction. Additionally, marine collagen's physicochemical and bioactive properties, such as antioxidants, wound healing, tissue engineering, and cosmetic biomaterial have been thoroughly discussed in this review. PRACTICAL APPLICATION: Collagen extracted from marine sources showed its potential in physicochemical and bioactive properties, including antioxidants and wound-healing capabilities, as an alternative to mammalian collagen. The significant amount of collagen found in marine species, particularly in fish skins, scales, bones, and sea cucumbers, suggests that marine sources could be a viable alternative to land mammal collagen due to their abundance and accessibility. The ultrasound-assisted extraction technique has improved the extracted marine collagen's physicochemical and bioactivity properties and quality properties.
Collapse
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Siti Hajar Abdul Rahman
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Anis Syafiqah Yusri
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nune Satya Sampath Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
3
|
Li X, Zhang Z, Guo Z, Zhao L, Liu Y, Ma X, He Q. Macrophage immunomodulatory activity of Acanthopanax senticousus polysaccharide nanoemulsion via activation of P65/JNK/ikkαsignaling pathway and regulation of Th1/Th2 Cytokines. PeerJ 2022; 9:e12575. [PMID: 35036126 PMCID: PMC8711278 DOI: 10.7717/peerj.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Nanoemulsions (NE) are used widely in pharmaceutical drug formulations and vaccine preparation, and Acanthopanax senticousus polysaccharide (ASPS) is a natural bioactive compound with immunostimulatory activity. Therefore, NE-loaded ASPS is expected to provide immunological enhancement for effective treatment. In the present study, Acanthopanax senticousus polysaccharide (ASPS was encapsulated into nanoemulsions, the resultant ASPS-NE were coated with a negative charge, and the immune enhancement mechanism of these ASPS-NE formulations was analyzed. The immunosuppressive animal models (70 ICR mice, male) for the study were established using cyclophosphamide. In addition, the activation of splenocyte proliferation, phagocytosis of the macrophages, the ratio of CD4+ to CD8+, the concentrations of the cytokines in serum, Western blot analysis was used for the analysis of the P65/JNK/ikk α signaling pathway in the peritoneal macrophage s. The results revealed that the ASPS-NE could stimulated the proliferation of splenocytes and enhance immunity. The ASPS-NE induced the expression of different cytokines (TNF-α, IFN-γ, IL-2, and IL-6), could activate the expressions of P65, JNK, and ikkα, and regulated the Th1/Th2 cytokines. These findings demonstrated the potential of ASPS-NE formulations for drug delivery and to induce potent and sustained immune responses.
Collapse
Affiliation(s)
- Xianghui Li
- State Key Laboratory of Agricultural Microbiology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhiqiang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhenhuan Guo
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Li Zhao
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yonglu Liu
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xia Ma
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
5
|
Quality Characteristics and Moisture Mobility of Giant Salamander (Andrias davidianus) Jerky during Roasting Process. J FOOD QUALITY 2021. [DOI: 10.1155/2021/9970797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Quality attributes and water mobility of giant salamander jerkies (GSJs) during roasting process (160°C, for 0, 20, 40, 60, and 80 min) were investigated. The results showed that
values and shear force increased of GSJs roasting from 20 to 80 min, while
, yield, and moisture content decreased significantly (
). Sensory assessment showed that GSJs at a roasting time of 40–60 min had higher scores. GSJs contained great amount of healthy unsaturated fatty acids (including DHA and EPA), and the total amino acids and essential amino acids were among 59.33–71.77 g·100 g−1 and 25.94–31.40 g·100 g−1, respectively. The mobility of the immobilized moisture and free moisture were shrunk dramatically during roasting. The proton density weighted images also exhibited the moisture shrinkage during roasting. In addition, T22 and T23 were positively correlated with MRI signal, moisture content, and yield of GSJs, but negatively correlated with shear force and overall acceptability, respectively. Thus, in view of various quality attributes and sensory evaluation, a roasting time of 40–60 min was favored for nutritive GSJs production. LF-NMR and MRI might be employed to profile the quality characteristics during roasting as a rapid and nondestructive analytical tool.
Collapse
|