1
|
Fratila DN, Virvescu DI, Luchian I, Hancianu M, Baciu ER, Butnaru O, Budala DG. Advances and Functional Integration of Hydrogel Composites as Drug Delivery Systems in Contemporary Dentistry. Gels 2024; 10:661. [PMID: 39451314 PMCID: PMC11507597 DOI: 10.3390/gels10100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
This study explores the recent advances of and functional insights into hydrogel composites, materials that have gained significant attention for their versatile applications across various fields, including contemporary dentistry. Hydrogels, known for their high water content and biocompatibility, are inherently soft but often limited by mechanical fragility. Key areas of focus include the customization of hydrogel composites for biomedical applications, such as drug delivery systems, wound dressings, and tissue engineering scaffolds, where improved mechanical properties and bioactivity are critical. In dentistry, hydrogels are utilized for drug delivery systems targeting oral diseases, dental adhesives, and periodontal therapies due to their ability to adhere to the mucosa, provide localized treatment, and support tissue regeneration. Their unique properties, such as mucoadhesion, controlled drug release, and stimuli responsiveness, make them ideal candidates for treating oral conditions. This review highlights both experimental breakthroughs and theoretical insights into the structure-property relationships within hydrogel composites, aiming to guide future developments in the design and application of these multifunctional materials in dentistry. Ultimately, hydrogel composites represent a promising frontier for advancing materials science with far-reaching implications in healthcare, environmental technology, and beyond.
Collapse
Affiliation(s)
- Dragos Nicolae Fratila
- Department of Oral Diagnosis, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Ioan Virvescu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Elena Raluca Baciu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dana Gabriela Budala
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Pecci-Lloret MP, Gea-Alcocer S, Murcia-Flores L, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Use of Nanoparticles in Regenerative Dentistry: A Systematic Review. Biomimetics (Basel) 2024; 9:243. [PMID: 38667254 PMCID: PMC11048101 DOI: 10.3390/biomimetics9040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION nanoparticles are tiny-sized materials whose characteristics and properties mean that their association with dental materials is being investigated to ascertain their effects and possible benefits on tooth structures. This systematic review aimed to qualitatively collect in vitro studies that address the potential application of different nanoparticles in dental regeneration. Following an exhaustive search and article selection process, 16 in vitro studies that met our eligibility criteria were included. BG-NPs were analyzed across five studies, with three demonstrating their impact on the growth and differentiation of human hDPSCs. CS-NPs were examined in three studies, with findings from two indicating a significant effect on the differentiation of SCAPs. Nanoparticles' therapeutic potential and their stimulatory effect on promoting the regeneration of cells of the dentin-pulp complex have been proven. Their effect is altered according to the type of nanoparticle, concentration, and substances associated with them and, depending on these variables, they will affect the pulp, dentine, and dental cementum differently.
Collapse
Affiliation(s)
- María Pilar Pecci-Lloret
- Special Care in Dentistry and Gerodontology Unit, Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (M.P.P.-L.); (S.G.-A.); (R.E.O.-S.)
| | - Silvia Gea-Alcocer
- Special Care in Dentistry and Gerodontology Unit, Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (M.P.P.-L.); (S.G.-A.); (R.E.O.-S.)
| | - Laura Murcia-Flores
- Department of Health Sciences, Catholic Unisersity San Antonio of Murcia, 30107 Murcia, Spain;
| | - Francisco Javier Rodríguez-Lozano
- Special Care in Dentistry and Gerodontology Unit, Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (M.P.P.-L.); (S.G.-A.); (R.E.O.-S.)
| | - Ricardo Elías Oñate-Sánchez
- Special Care in Dentistry and Gerodontology Unit, Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (M.P.P.-L.); (S.G.-A.); (R.E.O.-S.)
| |
Collapse
|
3
|
Bordini EAF, Stuani VDT, Correa LE, Cassiano FB, Lovison MF, Leite ML, Hebling J, de Souza Costa CA, Soares DG. Chitosan-Calcium Aluminate as a Cell-homing Scaffold: Its Bioactivity Testing in a Microphysiological Dental Pulp Platform. Altern Lab Anim 2024; 52:107-116. [PMID: 38351650 DOI: 10.1177/02611929241232558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
In vitro models of the dental pulp microenvironment have been proposed for the assessment of biomaterials, to minimise animal use in operative dentistry. In this study, a scaffold/3-D dental pulp cell culture interface was created in a microchip, under simulated dental pulp pressure, to evaluate the cell-homing potential of a chitosan (CH) scaffold functionalised with calcium aluminate (the 'CHAlCa scaffold'). This microphysiological platform was cultured at a pressure of 15 cm H2O for up to 14 days; cell viability, migration and odontoblastic differentiation were then assessed. The CHAlCa scaffold exhibited intense chemotactic potential, causing cells to migrate from the 3-D culture to its surface, followed by infiltration into the macroporous structure of the scaffold. By contrast, the cells in the presence of the non-functionalised chitosan scaffold showed low cell migration and no cell infiltration. CHAlCa scaffold bioactivity was confirmed in dentin sialophosphoprotein-positive migrating cells, and odontoblastic markers were upregulated in 3-D culture. Finally, in situ mineralised matrix deposition by the cells was confirmed in an Alizarin Red-based assay, in which the CHAlCa and CH scaffolds were adapted to fit within dentin discs. More intense deposition of matrix was observed with the CHAlCa scaffold, as compared to the CH scaffold. In summary, we present an in vitro platform that provides a simple and reproducible model for selecting and developing innovative biomaterials through the assessment of their cell-homing potential. By using this platform, it was shown that the combination of calcium aluminate and chitosan has potential as an inductive biomaterial that can mediate dentin tissue regeneration during cell-homing therapies.
Collapse
Affiliation(s)
- Ester Alves Ferreira Bordini
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Vitor de Toledo Stuani
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Lígia Espoliar Correa
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Fernanda Balestrero Cassiano
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Marcella Fernandes Lovison
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Maria Luisa Leite
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Josimeri Hebling
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| |
Collapse
|
4
|
Abuljadayel JA. The Potential Uses of Baobab Tree's Medicinal Effects in Dentistry: A Literature Review. Cureus 2023; 15:e49304. [PMID: 38957190 PMCID: PMC11218599 DOI: 10.7759/cureus.49304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 07/04/2024] Open
Abstract
Adansonia digitata (Baobab) tree is an African tree with a long history in traditional medicine. The local inhabitants of Africa have been using the different tree components to treat medical diseases, such as fever, diarrhea, malaria, cough, dysentery, and microbial infections. Recently, the tree gained the attention of scientists due to its medical and pharmaceutical properties and nutritional values, which generated a myriad number of investigations regarding its phytochemical and macro- and micronutrient contents. The fruit pulp is especially rich in vitamin C, pectin, fibers, and minerals such as calcium, magnesium, potassium, phosphorus, zinc, iron, and copper. Additionally, the leaves contain high levels of calcium, while the seeds are considered a good source of protein and fat. Altogether, they contain a variety of polyphenols, fatty acids, and amino acids. The tree extracts possess potent antioxidant, cell-protective, and anti-inflammatory activities. However, no information was found in the literature about the use of Baobab tree products in the dental field. The aim of this review is to discuss the well-documented medical effects and chemical and mineral components of the different Baobab tree parts from a dental point of view to open more areas of research concerning its potential applications in the dental field. Antioxidants and vitamin C are known to help in maintaining healthy periodontal and gingival tissues. They also help in wound healing and alveolar bone integrity. Moreover, phytochemicals and phenolic compounds have been utilized in controlling dental plaque and manufacturing intracanal medications as they manifest antimicrobial and anti-inflammatory activities. Furthermore, calcium and phosphorus incorporation in dental biomaterials is commonly used in vital pulp therapy and repairing bone defects. After reviewing the reported medicinal and pharmaceutical activities of the Baobab tree, it can be inferred that the tree extracts possess potential uses in the dental field, which requires further investigation for validation.
Collapse
|
5
|
Agnes CJ, Karoichan A, Tabrizian M. The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2023. [PMID: 37310896 PMCID: PMC10354806 DOI: 10.1021/acsabm.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An increasing number of publications over the past ten years have focused on the development of chitosan-based cross-linked scaffolds to regenerate bone tissue. The design of biomaterials for bone tissue engineering applications relies heavily on the ideals set forth by a polytherapy approach called the "Diamond Concept". This methodology takes into consideration the mechanical environment, scaffold properties, osteogenic and angiogenic potential of cells, and benefits of osteoinductive mediator encapsulation. The following review presents a comprehensive summarization of recent trends in chitosan-based cross-linked scaffold development within the scope of the Diamond Concept, particularly for nonload-bearing bone repair. A standardized methodology for material characterization, along with assessment of in vitro and in vivo potential for bone regeneration, is presented based on approaches in the literature, and future directions of the field are discussed.
Collapse
Affiliation(s)
- Celine J Agnes
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
| | - Antoine Karoichan
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| |
Collapse
|
6
|
Liu L, Wu D, Tu H, Cao M, Li M, Peng L, Yang J. Applications of Hydrogels in Drug Delivery for Oral and Maxillofacial Diseases. Gels 2023; 9:gels9020146. [PMID: 36826316 PMCID: PMC9956178 DOI: 10.3390/gels9020146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Oral and maxillofacial diseases have an important impact on local function, facial appearance, and general health. As a multifunctional platform, hydrogels are widely used in the biomedical field due to their excellent physicochemical properties. In recent years, a large number of studies have been conducted to adapt hydrogels to the complex oral and maxillofacial environment by modulating their pore size, swelling, degradability, stimulus-response properties, etc. Meanwhile, many studies have attempted to use hydrogels as drug delivery carriers to load drugs, cytokines, and stem cells for antibacterial, anticancer, and tissue regeneration applications in oral and maxillofacial regions. This paper reviews the application and research progress of hydrogel-based drug delivery systems in the treatment of oral and maxillofacial diseases such as caries, endodontic diseases, periodontal diseases, maxillofacial bone diseases, mucosal diseases, oral cancer, etc. The characteristics and applications of hydrogels and drug-delivery systems employed for the treatment of different diseases are discussed in order to provide a reference for further research on hydrogel drug-delivery systems in the future.
Collapse
Affiliation(s)
- Lijia Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Heng Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengxin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
7
|
Jain C, Surabhi P, Marathe K. Critical Review on the Developments in Polymer Composite Materials for Biomedical Implants. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:893-917. [PMID: 36369719 DOI: 10.1080/09205063.2022.2145870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There has been a lack of research for developing functional polymer composites for biomedical implants. Even though metals are widely used as implant materials, there is a need for developing polymer composites as implant materials because of the stress shielding effect that causes a lack of compatibility of metals with the human body. This review aims to bring out the latest developments in polymer composite materials for body implants and to emphasize the significance of polymer composites as a viable alternative to conventional materials used in the biomedical industry for ease of life. This review article explores the developments in functional polymer composites for biomedical applications and provides distinct divisions for their applications based on the part of the body where they are implanted. Each application has been covered in some detail. The various applications covered are bone transplants and bone regeneration, cardiovascular implants (stents), dental implants and restorative materials, neurological and spinal implants, and tendon and ligament replacement.
Collapse
Affiliation(s)
| | | | - Kumudinee Marathe
- Department of Chemical Engg, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India 400019
| |
Collapse
|
8
|
Strutynska N, Slobodyanik M, Tykhonenko T, Titov Y, Stus N. Features of synthesis of sodium and carbonate containing biphasic calcium phosphates and their cytotoxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
FAN C, LI Z, JI Q, SUN H, LIANG Y, YANG P. Carboxymethyl chitin or chitosan for osteoinduction effect on the human periodontal ligament stem cells. Dent Mater J 2022; 41:392-401. [DOI: 10.4012/dmj.2021-250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chun FAN
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Zhiyuan LI
- Medical Research Center, The Affiliated Hospital of Qingdao University
| | - Qiuxia JI
- Department of Periodontology, The Affiliated Hospital of Qingdao University
| | - Hui SUN
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Ye LIANG
- Medical Research Center, The Affiliated Hospital of Qingdao University
| | - Pishan YANG
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| |
Collapse
|
10
|
Hua L, Qian H, Lei T, Liu W, He X, Zhang Y, Lei P, Hu Y. Anti-tuberculosis drug delivery for tuberculous bone defects. Expert Opin Drug Deliv 2021; 18:1815-1827. [PMID: 34758697 DOI: 10.1080/17425247.2021.2005576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Traditional therapy methods for treating tuberculous bone defects have several limitations. Furthermore, systemic toxicity and disease recurrence in tuberculosis (TB) have not been effectively addressed. AREAS COVERED This review is based on references from September 1998 to September 2021 and summarizes the classification and drug-loading methods of anti-TB drugs. The application of different types of biological scaffolds loaded with anti-TB drugs as a novel drug delivery strategy for tuberculous bone defects has been deeply analyzed. Furthermore, the limitations of the existing studies are summarized. EXPERT OPINION Loading anti-TB drugs into the scaffold through various drug-loading techniques can effectively improve the efficiency of anti-TB treatment and provide an effective means of treating tuberculous bone defects. This methodology also has good application prospects and provides directions for future research.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China.,Department of orthopedics,The Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi, P. R. China
| | - Hu Qian
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Ting Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Xi He
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Yu Zhang
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|