1
|
Wang T, Yan J, Zhang S, Qi N, Zhang Y, Li G, Han Z. Silk fibroin microspheres loaded Rehmannia Liuwei extract for the protection of endothelial cells from the inhibitory effects. Colloids Surf B Biointerfaces 2024; 241:114034. [PMID: 38878662 DOI: 10.1016/j.colsurfb.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/29/2024]
Abstract
Liuwei Dihuang (LWDH) is a multi-component and multi-target Chinese herbal compound widely used for treating chronic conditions such as diabetes, diabetic nephropathy, hypertension, osteoporosis, and chronic kidney disease. However, traditional Chinese medicine (TCM) preparations like decoction and pill face limitations, including low active component concentration, limited bioavailability, short half-life, and the need for high dosage, which may increase the burden on liver and kidney functions and reduce clinical efficacy. In this study, LWDH was further purified using D101 macroporous adsorption resin, resulting in a soluble extract with an active component content 53.6 times higher than that of LWDH itself. The freeze-dried LWDH extract was then encapsulated within silk fibroin (SF) microspheres to significantly enhance the sustained release performance of the drug. In a human umbilical vein endothelial cell (HUVEC) model cultured under high glucose conditions, methanol vapor-treated SF/LWDH microspheres demonstrated a decrease in the 24-hour drug release rate from 61.88 % to 34.81 %, augmenting their protective effect on endothelial cells.
Collapse
Affiliation(s)
- Tao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jia Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shujun Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ning Qi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yue Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Zhifen Han
- Department of Integrated Traditional Chinese and Western Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
2
|
Xie C, Yang X, Zheng F, Shi J, Huo C, Wang Z, Reis RL, Kundu SC, Xiao B, Duan L. Facilely printed silk fibroin hydrogel microparticles as injectable long-lasting fillers. Biomater Sci 2024; 12:375-386. [PMID: 37997042 DOI: 10.1039/d3bm01488f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
There is a high demand from aging people for facial fillers with desirable biocompatibility and lasting filling effects to overcome facial depression. Novel injectable regenerated silk fibroin (RSF) microparticles were facilely printed from a glycidyl methacrylate-modified silk fibroin hydrogel to address this issue. The β-sheet content and mechanical properties of the RSF hydrogel can be simply modulated by the number of freeze-thawing cycles, and the swelling rate of the RSF hydrogel in saline was negligible. The printed RSF microparticles were uniform, and their diameter was about 300-500 μm, which could be adjusted by the pore sizes of the printed screens. After the injection with a 26-gauge needle, the size distribution of RSF microparticles had no noticeable variation, suggesting that the microparticles could bear the shear strain without breaking during the injection. The in vitro experiments demonstrated that RSF not only had desirable biocompatibility but also facilitated fibroblast migration. The subcutaneous injection experiments demonstrated that the RSF microparticles formed a lasting spot in the injected site. The tissue sections revealed that the RSF microparticles were still distinct on week 8, and blood vessels formed around the microparticles. These promising data demonstrate that the printed RSF microparticles have great potential for facial rejuvenation.
Collapse
Affiliation(s)
- Chunyu Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Xiao Yang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Fan Zheng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jiahao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Caixia Huo
- Beijing Green Pharmaceutical Technology Co., Ltd, Fengtai, Beijing 100070, China
| | - Zuyuan Wang
- Beijing Green Pharmaceutical Technology Co., Ltd, Fengtai, Beijing 100070, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Lian Duan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
3
|
Jia Z, Zeng H, Ye X, Dai M, Tang C, Liu L. Hydrogel-based treatments for spinal cord injuries. Heliyon 2023; 9:e19933. [PMID: 37809859 PMCID: PMC10559361 DOI: 10.1016/j.heliyon.2023.e19933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal cord injury (SCI) is characterized by damage resulting in dysfunction of the spinal cord. Hydrogels are common biomaterials that play an important role in the treatment of SCI. Hydrogels are biocompatible, and some have electrical conductivity that are compatible with spinal cord tissues. Hydrogels have a high drug-carrying capacity, allowing them to be used for SCI treatment through the loading of various types of active substances, drugs, or cells. We first discuss the basic anatomy and physiology of the human spinal cord and briefly discuss SCI and its treatment. Then, we describe different treatment strategies for SCI. We further discuss the crosslinking methods and classification of hydrogels and detail hydrogel biomaterials prepared using different processing methods for the treatment of SCI. Finally, we analyze the future applications and limitations of hydrogels for SCI. The development of biomaterials opens up new possibilities and options for the treatment of SCI. Thus, our findings will inspire scholars in related fields and promote the development of hydrogel therapy for SCI.
Collapse
Affiliation(s)
- Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
4
|
Guan W, Gao H, Sun S, Zheng T, Wu L, Wang X, Huang R, Li G. Multi-scale, multi-level anisotropic silk fibroin/metformin scaffolds for repair of peripheral nerve injury. Int J Biol Macromol 2023; 246:125518. [PMID: 37353122 DOI: 10.1016/j.ijbiomac.2023.125518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Silk fibroin (SF) as a natural polymer has a long history of application in various regenerative medicine fields, but there are still many shortcomings in silk fibroin for using as nerve scaffolds, which limit its clinical application in peripheral nerve regeneration (PNR). In this work, a multi-scale and multi-level metformin (MF)-loaded silk fibroin scaffold with anisotropic micro-nano composite topology was prepared by micromolding electrospinning for accelerating PNR. The scaffolds were characterized for morphology, wettability, mechanical properties, degradability, and drug release, and Schwann cells (SCs) and dorsal root ganglia (DRG) were cultured on the scaffolds to assess their effects on neural cell behavior. Finally, the gene expression differences of neural cells cultured on scaffolds were analyzed by gene sequencing and RT-qPCR to explore the possible signaling pathways and mechanisms. The results showed that the scaffolds had excellent mechanical properties and hydrophilicity, slow degradation rate and drug release rate, which were enough to support the repair of peripheral nerve injury for a long time. In Vitro cell experiments showed that the scaffolds could significantly promote the orientation of SCs and axons extension of DRG. Gene sequencing and RT-qPCR revealed that the scaffolds could up-regulate the expression of genes related to SCs proliferation, adhesion, migration, and myelination. In summary, the scaffolds hold great potential for promoting PNR at the micro/nano multiscale and physical/chemical levels and show promising application for the treatment of peripheral nerve injury in the future.
Collapse
Affiliation(s)
- Wenchao Guan
- Key laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hongxia Gao
- Key laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shaolan Sun
- Key laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Tiantian Zheng
- Key laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Linliang Wu
- Key laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaolu Wang
- Suzhou Simatech CO.,LTD., Suzhou 215123, China
| | - Ran Huang
- Zhejiang Silkseekers Biotechnology CO., LTD., Hangzhou 310004, China
| | - Guicai Li
- Key laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Li D, Xia C, Chen X, Li Q, Li J, Qian X. Fabrication of novel ruthenium loaded silk fibroin nanomaterials for fingolimod release improved antitumor efficacy in hepatocellular carcinoma. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1955-1972. [PMID: 35820069 DOI: 10.1080/09205063.2022.2090348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cancer targeted nanomaterials-based drug delivery systems have been described as promising. In this work, we employed silk fibroin (SF), ruthenium nanomaterials (RuNMs), heptapeptide (T7), and fingolimod (FTY720) to construct a pH-responsive smart nanomaterials drug delivery system. They were spherical with a mean size of around 120 nm, which may have contributed to the improved penetration and retention of the NMs in tumour areas. T7-FTY720@SF-RuNMs had an encapsulation efficiency (EE) of 72.51 ± 4.02%. When the pH of an environment is acidic, the release of FTY720 from nanocarriers is enhanced. T7-FTY720@SF-RuNMs demonstrated increased cellular uptake selective and anticancer efficacy for hepatocellular cancer in both in vitro and in vivo experiments. Additionally, the in vivo biodistribution investigation showed that T7-FTY720@SF-RuNMs could efficiently aggregate in the tumour location, improving their in vivo potential to kill cancer cells. T7-FTY720@SF-RuNMs demonstrated little toxicity to tumour-bearing animals in investigations of histology and immunohistochemistry, showing that the fabricated NMs are biocompatible in vivo. For the treatment of hepatocellular cancer, the T7-FTY720@SF-RuNMs delivery method offers significant promise.
Collapse
Affiliation(s)
- Dong Li
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Chenmei Xia
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Xia Chen
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Qianqian Li
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Jian Li
- Department of General Surgery, Baoji Hospital, Baoji, China
| | - Xiaoqi Qian
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
6
|
Silk Fibroin Hydrogels Could Be Therapeutic Biomaterials for Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2076680. [PMID: 35547640 PMCID: PMC9085322 DOI: 10.1155/2022/2076680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/18/2022] [Indexed: 12/17/2022]
Abstract
Silk fibroin, a natural macromolecular protein without physiological activity, has been widely used in different fields, such as the regeneration of bones, cartilage, nerves, and other tissues. Due to irrevocable neuronal injury, the treatment and prognosis of neurological diseases need to be investigated. Despite attempts to propel neuroprotective therapeutic approaches, numerous attempts to translate effective therapies for brain disease have been largely unsuccessful. As a good candidate for biomedical applications, hydrogels based on silk fibroin effectively amplify their advantages. The ability of nerve tissue regeneration, inflammation regulation, the slow release of drugs, antioxidative stress, regulation of cell death, and hemostasis could lead to a new approach to treating neurological disorders. In this review, we introduced the preparation of SF hydrogels and then delineated the probable mechanism of silk fibroin in the treatment of neurological diseases. Finally, we showed the application of silk fibroin in neurological diseases.
Collapse
|