1
|
Wei P, He M, Wang Y, Han G. High-Fat Diet Alters Acylcarnitine Metabolism of the Retina and Retinal Pigment Epithelium/Choroidal Tissues in Laser-Induced Choroidal Neovascularization Rat Models. Mol Nutr Food Res 2023; 67:e2300080. [PMID: 37490551 DOI: 10.1002/mnfr.202300080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/19/2023] [Indexed: 07/27/2023]
Abstract
SCOPE Choroidal neovascularization (CNV) is age-related macular degeneration's (AMD) main pathological change. High-fat diet (HFD) is associated with a form of CNV; however, the specific mechanism is unclear. Mitochondrial dysfunction, characterized by abnormal acylcarnitine, occurs during metabolic screening of serum or other body tissues in AMD. This study investigates HFD's role in retinal and retinal pigment epithelium (RPE)/choroidal acylcarnitine metabolism in CNV formation. METHODS AND RESULTS Chow diet and HFD-BN rats are laser-treated to induce CNV. Acylcarnitine species are quantitatively characterized by ultrahigh-performance liquid chromatography-tandem mass spectrometry. Optical coherence tomography and fundus fluorescein angiography evaluate CNV severity. HFD promotes weight gain, dyslipidemia, and CNV formation. In CNV rats, few medium-chain fatty acids (MCFAs) acylcarnitine in the RPE/choroid are initially affected. When an HFD is administered to these, even MCFA acylcarnitine in the RPE/choroid is found to decline. However, in the retina, odd acylcarnitines are increased, revealing "an opposite" change within the RPE/choroid, accompanied by influencing glycolytic key enzymes. The HFD+CNV group incorporated fewer long-chain acylcarnitines, like C18:2, into the retina than controls. CONCLUSIONS HFD hastens choroidal neovascularization. The study comprehensively documented acylcarnitine profiles in a CNV rat model. Acylcarnitine's odd-even and carbon-chain length properties may guide future therapeutics.
Collapse
Affiliation(s)
- Pinghui Wei
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| | - Meiqin He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300020, P. R. China
| | - Ying Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| | - Guoge Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| |
Collapse
|
2
|
Huang K, Liu X, Lv Z, Zhang D, Zhou Y, Lin Z, Guo J. MMP9-Responsive Graphene Oxide Quantum Dot-Based Nano-in-Micro Drug Delivery System for Combinatorial Therapy of Choroidal Neovascularization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207335. [PMID: 36871144 DOI: 10.1002/smll.202207335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Age-related macular degeneration (AMD), especially wet AMD with choroidal neovascularization (CNV), commonly causes blindness in older patients and disruption of the choroid followed by second-wave injuries, including chronic inflammation, oxidative stress, and excessive matrix metalloproteinase 9 (MMP9) expression. Increased macrophage infiltrate in parallel with microglial activation and MMP9 overexpression on CNV lesions is shown to contribute to the inflammatory process and then enhance pathological ocular angiogenesis. Graphene oxide quantum dots (GOQDs), as natural antioxidants, exert anti-inflammatory effects and minocycline is a specific macrophage/microglial inhibitor that can suppress both macrophage/microglial activation and MMP9 activity. Herein, an MMP9-responsive GOQD-based minocycline-loaded nano-in-micro drug delivery system (C18PGM) is developed by chemically bonding GOQDs to an octadecyl-modified peptide sequence (C18-GVFHQTVS, C18P) that can be specifically cleaved by MMP9. Using a laser-induced CNV mouse model, the prepared C18PGM shows significant MMP9 inhibitory activity and anti-inflammatory action followed by antiangiogenic effects. Moreover, C18PGM combined with antivascular endothelial growth factor antibody bevacizumab markedly increases the antiangiogenesis effect by interfering with the "inflammation-MMP9-angiogenesis" cascade. The prepared C18PGM shows a good safety profile and no obvious ophthalmic or systemic side effects. The results taken together suggest that C18PGM is an effective and novel strategy for combinatorial therapy of CNV.
Collapse
Affiliation(s)
- Keke Huang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Xin Liu
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Ziru Lv
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Di Zhang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Yuling Zhou
- Department of ophthalmology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435000, P. R. China
| | - Zhiqing Lin
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Juan Guo
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| |
Collapse
|
3
|
Tun SBB, Barathi VA. Akimba Proliferative Diabetic Retinopathy Model: Understanding Molecular Mechanism and Drug Screening for the Progression of Diabetic Retinopathy. Methods Mol Biol 2023; 2678:13-26. [PMID: 37326702 DOI: 10.1007/978-1-0716-3255-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As the prevalence of diabetes has reached epidemic proportions worldwide, diabetic retinopathy incidence is increasing rapidly. An advanced diabetic retinopathy (DR) stage can lead to a sight-threatening form. There is growing evidence showing diabetes causes a range of metabolic changes that subsequently lead to pathological modifications in the retina and retinal blood vessels. To understand the complex mechanism of the pathophysiology of DR, a precise model is not readily available. By crossbreeding the Akita and Kimba strains, a suitable proliferative DR model was acquired. This new Akimba strain manifests marked hyperglycemia and vascular changes, which resemble the early and advanced stage of DR.Here, we describe the breeding method, colony screening for experiments, and imaging techniques widely used to investigate the DR progression in this model. We elaborate step-by-step protocols to set up and perform fundus, fluorescein angiography, optical coherence tomography, and optical coherence tomography-angiogram to study retinal structural changes and vascular abnormalities. In addition, we show a method to label the leukocytes with fluorescence and laser speckle flowgraphy to examine the inflammation in the retina and retinal vessel blood flow speed, respectively. Lastly, we describe electroretinogram to evaluate the functional aspect of the DR transformations.
Collapse
Affiliation(s)
- Sai Bo Bo Tun
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, Singapore, Singapore
- Karolinska Institutet, Stockholm, Sweden
| | - Veluchamy Amutha Barathi
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, Singapore, Singapore.
- ACP in Ophthalmology & Visual Sciences, DUKE-NUS Graduate Medical School, Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
HTRA1 Regulates Subclinical Inflammation and Activates Proangiogenic Response in the Retina and Choroid. Int J Mol Sci 2022; 23:ijms231810206. [PMID: 36142120 PMCID: PMC9499640 DOI: 10.3390/ijms231810206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
High-temperature requirement A1 (HtrA1) has been identified as a disease-susceptibility gene for age-related macular degeneration (AMD) including polypoidal choroidal neovasculopathy (PCV). We characterized the underlying phenotypic changes of transgenic (Tg) mice expressing ubiquitous CAG promoter (CAG-HtrA1 Tg). In vivo imaging modalities and histopathology were performed to investigate the possible neovascularization, drusen formation, and infiltration of macrophages. Subretinal white material deposition and scattered white-yellowish retinal foci were detected on CFP [(Tg—33% (20/60) and wild-type (WT)—7% (1/15), p < 0.05]. In 40% (4/10) of the CAG-HtrA1 Tg retina, ICGA showed punctate hyperfluorescent spots. There was no leakage on FFA and OCTA failed to confirm vascular flow signals from the subretinal materials. Increased macrophages and RPE cell migrations were noted from histopathological sections. Monocyte subpopulations were increased in peripheral blood in the CAG-HtrA1 Tg mice (p < 0.05). Laser induced CNV in the CAG-HtrA1 Tg mice and showed increased leakage from CNV compared to WT mice (p < 0.05). Finally, choroidal explants of the old CAG-HtrA1 Tg mice demonstrated an increased area of sprouting (p < 0.05). Signs of subclinical inflammation was observed in CAG-HtrA1 Tg mice. Such subclinical inflammation may have resulted in increased RPE cell activation and angiogenic potential.
Collapse
|
5
|
Hwang SJ, Ahn BJ, Shin MW, Song YS, Choi Y, Oh GT, Kim KW, Lee HJ. miR-125a-5p attenuates macrophage-mediated vascular dysfunction by targeting Ninjurin1. Cell Death Differ 2022; 29:1199-1210. [PMID: 34974535 PMCID: PMC9177769 DOI: 10.1038/s41418-021-00911-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ninjurin1 (Ninj1), an adhesion molecule, regulates macrophage function in hyaloid regression, multiple sclerosis, and atherosclerosis. However, its biological relevance and the mechanism underlying its function in vascular network integrity have not been studied. In this study, we investigated the role of Ninj1 in physiological (postnatal vessel formation) and pathological (endotoxin-mediated inflammation and diabetes) conditions and developed a strategy to regulate Ninj1 using specific micro (mi)RNAs under pathological conditions. Ninj1-deficient mice exhibited decreased hyaloid regression, tip cell formation, retinal vascularized area, recruitment of macrophages, and endothelial apoptosis during postnatal development, resulting in delayed formation of the vascular network. Five putative miRNAs targeting Ninj1 were selected using the miRanda algorithm and comparison of expression patterns. Among them, miR-125a-5p showed a profound inhibitory effect on Ninj1 expression, and miR-125a-5p mimic suppressed the cell-to-cell and cell-to-matrix adhesion of macrophages and expression of pro-inflammatory factors mediated by Ninj1. Furthermore, miR-125a-5p mimic inhibited the recruitment of macrophages into inflamed retinas in endotoxin-induced inflammation and streptozotocin-induced diabetes in vivo. In particular, miR-125a-5p mimic significantly attenuated vascular leakage in diabetic retinopathy. Taken together, these findings suggest that Ninj1 plays a pivotal role in macrophage-mediated vascular integrity and that miR-125a-5p acts as a novel regulator of Ninj1 in the management of inflammatory diseases and diabetic retinopathy.
Collapse
Affiliation(s)
- Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
- College of Pharmacy, Inje University, 607 Obang-dong, Gimhae, Gyungnam, 621-749, South Korea
| | - Bum Ju Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Min-Wook Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ye-Seul Song
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Youngbin Choi
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea.
| |
Collapse
|
6
|
A Case of Chorioretinitis with Retinal Angiomatous Proliferation. Case Rep Ophthalmol Med 2022; 2021:3564939. [PMID: 34987875 PMCID: PMC8720613 DOI: 10.1155/2021/3564939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 12/02/2022] Open
Abstract
A 48-year-old woman had an acute blurred vision in the right eye immediately after drainage of liver abscess. Her best corrected visual acuity (BCVA) was 8/400; fundus photography suggested the diagnosis of endogenous endophthalmitis with chorioretinitis and vitritis. Due to the bad systemic condition, a systemic antibiotic combined with periocular triamcinolone (TA) was carried out first. Inflammatory cells in the vitreous cavity were decreased after treatment; however, fundus fluorescein angiography (FFA) showed abnormal dilation and leakage of the capillaries and retinal-choroidal anastomose, supporting that there was retinal angiomatous proliferation (RAP). Vitreous interleukin-6 (IL-6) was only slightly elevated; the ratio of interleukin-10 (IL-10) and IL-6 was less than 1, and the etiological test was negative. After receiving intravitreal vancomycin injection combined with periocular TA injection, the patient's BCVA was improved from 16/400 to 20/400 with a reduction in vitreous inflammatory cells. However, the patient's RAP was progressed and her BCVA was dramatically decreased to count finger/30 cm. After intravitreal injection of ranibizumab, the patient's BCVA was 5/400 with a significant shrink in lesions and absorption of hemorrhage, exudation, and fluid. Thus, we suggest that early anti-inflammatory treatment in conjunction with anti-VEGF may achieve a better prognosis in patients with inflammatory retinal angiomatous proliferation (RAP).
Collapse
|
7
|
Kawali AA, Mohan A, Mehta R, Mahendradas P, Srinivasan S, Shetty B. Anti-vascular endothelial growth factor in the treatment of macular edema in epidemic retinitis. Indian J Ophthalmol 2020; 68:1912-1915. [PMID: 32823413 PMCID: PMC7690540 DOI: 10.4103/ijo.ijo_439_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 11/04/2022] Open
Abstract
PURPOSE To study efficacy of anti-vascular endothelial growth factor (anti-VEGF) in resolution of macular edema in epidemic retinitis (ER). METHODS In this retrospective, comparative study, patients diagnosed as ER with central macular thickness (CMT) ≥ 600 μm on SD-OCT at presentation were studied. Eyes which did not receive intravitreal anti-VEGF formed group A and eyes receiving additional anti-VEGF formed group B. Eyes receiving anti-VEGF monotherapy were studied separately. Cases with subsequent OCT scans with interval of more than 20 days and cases without OCT scan at the resolution were excluded. Treatment details, visual outcome, and days to resolution of macular edema were studied. RESULTS Mean CMT in group A (n = 8) was 820.1 μm (range 607-1004 μm) and in Group B (n = 4) was 756.0 μm (range 603-1000 μm). Macular edema resolved in 34.8 days (range: 16-65) and 39.0 days (range: 21-45) in group A and B, respectively. Two eyes with anti-VEGF monotherapy recovered in 45 and 18 days, respectively. Mean corrected distance visual acuity (CDVA) at presentation in group A was 19.1 (range: 0-61) ETDRS letters and in group B was 14.3 (range: 0-35) ETDRS letters. Mean CDVA improved to 65.7 (range: 0-85) and 50.8 (range: 20-76) ETDRS letters in group A and B, respectively. Anti-VEGF monotherapy eyes improved from 35 and 46 ETDRS letters to 70 and 85 ETDRS letters, respectively. CONCLUSION Additional anti-VEGF therapy has no added advantage in speed of resolution of macular edema due to ER. A randomized controlled trial with steroids sparing "anti-VEGF monotherapy" may verify our observations.
Collapse
Affiliation(s)
- Ankush A Kawali
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Ashwin Mohan
- Retina, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Ruchir Mehta
- Retina, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Padmamalini Mahendradas
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Sanjay Srinivasan
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Bhujang Shetty
- General Ophthalmology, Narayana Nethralaya, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Cunningham ET, Pichi F, Dolz-Marco R, Freund KB, Zierhut M. Inflammatory Choroidal Neovascularization. Ocul Immunol Inflamm 2020; 28:2-6. [DOI: 10.1080/09273948.2019.1704153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Emmett T. Cunningham
- Department of Ophthalmology, California Pacific Medical Center, San Francisco, California, USA
- The Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- The Francis I. Proctor Foundation, UCSF School of Medicine, San Francisco, California, USA
| | - Francesco Pichi
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- The Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - K. Bailey Freund
- Vitreous-Retina-Macula Consultants of New York, New York, New York, USA
| | - Manfred Zierhut
- Centre for Ophthalmology, University Tuebingen, Tuebingen, Germany
| |
Collapse
|