1
|
R R, Prüser T, Schulz NKE, Mayer PMF, Ogueta M, Stanewsky R, Kurtz J. Deciphering a Beetle Clock: Individual and Sex-Dependent Variation in Daily Activity Patterns. J Biol Rhythms 2024; 39:484-501. [PMID: 39082472 PMCID: PMC11416735 DOI: 10.1177/07487304241263619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Circadian clocks are inherent to most organisms, including cryptozoic animals that seldom encounter direct light, and regulate their daily activity cycles. A conserved suite of clock genes underpins these rhythms. In this study, we explore the circadian behaviors of the red flour beetle Tribolium castaneum, a significant pest impacting stored grain globally. We report on how daily light and temperature cues synchronize distinct activity patterns in these beetles, characterized by reduced morning activity and increased evening activity, anticipating the respective environmental transitions. Although less robust, rhythmicity in locomotor activity is maintained in constant dark and constant light conditions. Notably, we observed more robust rhythmic behaviors in males than females with individual variation exceeding those previously reported for other insect species. RNA interference targeting the Clock gene weakened locomotor activity rhythms. Our findings demonstrate the existence of a circadian clock and of clock-controlled behaviors in T. castaneum. Furthermore, they highlight substantial individual differences in circadian activity, laying the groundwork for future research on the relevance of individual variation in circadian rhythms in an ecological and evolutionary context.
Collapse
Affiliation(s)
- Reshma R
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Tobias Prüser
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Nora K. E. Schulz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Paula M. F. Mayer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Maite Ogueta
- Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| |
Collapse
|
2
|
de Souza PE, Souza-Silva M, Ferreira RL. The ticking clock in the dark: Review of biological rhythms in cave invertebrates. Chronobiol Int 2024; 41:738-756. [PMID: 38722073 DOI: 10.1080/07420528.2024.2348010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Circadian clocks, internal mechanisms that generate 24-hour rhythms, play a crucial role in coordinating biological events with day-night cycles. In light-deprived environments such as caves, species, particularly isolated obligatory troglobites, may exhibit evolutionary adaptations in biological rhythms due to light exposure. To explore rhythm expression in these settings, we conducted a comprehensive literature review on invertebrate chronobiology in global subterranean ecosystems, analyzing 44 selected studies out of over 480 identified as of September 2023. These studies revealed significant taxonomic diversity, primarily among terrestrial species like Coleoptera, with research concentrated in the United States, Italy, France, Australia, and Brazil, and a notable gap in African records. Troglobite species displayed a higher incidence of aperiodic behavior, while troglophiles showed a robust association with rhythm expression. Locomotor activity was the most studied aspect (>60%). However, approximately 4% of studies lacked information on periodicity or rhythm asynchrony, and limited research under constant light conditions hindered definitive conclusions. This review underscores the need to expand chronobiological research globally, encompassing diverse geographical regions and taxa, to deepen our understanding of biological rhythms in subterranean species. Such insights are crucial for preserving the resilience of subsurface ecosystems facing threats like climate change and habitat loss.
Collapse
Affiliation(s)
| | - Marconi Souza-Silva
- Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
| | | |
Collapse
|
3
|
Jabbur ML, Dani C, Spoelstra K, Dodd AN, Johnson CH. Evaluating the Adaptive Fitness of Circadian Clocks and their Evolution. J Biol Rhythms 2024; 39:115-134. [PMID: 38185853 PMCID: PMC10994774 DOI: 10.1177/07487304231219206] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Surely most chronobiologists believe circadian clocks are an adaptation of organisms that enhances fitness, but are we certain that this focus of our research effort really confers a fitness advantage? What is the evidence, and how do we evaluate it? What are the best criteria? These questions are the topic of this review. In addition, we will discuss selective pressures that might have led to the historical evolution of circadian systems while considering the intriguing question of whether the ongoing climate change is modulating these selective pressures so that the clock is still evolving.
Collapse
Affiliation(s)
- Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Chitrang Dani
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
4
|
Grenfell KL, Jacobs PJ, Bennett NC, Hart DW. The role of ambient temperature and light as cues in the control of circadian rhythms of Damaraland mole-rat. Chronobiol Int 2024; 41:356-368. [PMID: 38444071 DOI: 10.1080/07420528.2024.2325649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Light is considered the primary entrainer for mammalian biological rhythms, including locomotor activity (LA). However, mammals experience different environmental and light conditions, which include those predominantly devoid of light stimuli, such as those experienced in subterranean environments. In this study, we investigated what environmental cue (light or ambient temperature (Ta)) is the strongest modulator of circadian rhythms, by using LA as a proxy, in mammals that experience a lifestyle devoid of light stimuli. To address this question, this study exposed a subterranean African mole-rat species, the Damaraland mole-rat (Fukomys damarensis), to six light and Ta cycles in different combinations. Contrary to previous literature, when provided with a reliable light cue, Damaraland mole rats exhibited nocturnal, diurnal, or arrhythmic LA patterns under constant Ta. While under constant darkness and a 24-hour Ta cycle mimicking the burrow environment, all mole-rats were most active during the coolest 12-hour period. This finding suggests that in a subterranean environment, which receives no reliable photic cue, the limited heat dissipation and energy constraints during digging activity experienced by Damaraland mole-rats make Ta a reliable and consistent "time-keeping" variable. More so, when providing a reliable light cue (12 light: 12 dark) to Damaraland mole-rats under a 24-hour Ta cycle, this study presents the first evidence that cycles of Ta affect the LA rhythm of a subterranean mammal more strongly than cycles of light and darkness. Once again, Damaraland mole-rats were more active during the coolest 12-hour period regardless of whether this fell during the light or dark phase. However, conclusive differentiation of entrainment to Ta from that of masking was not achieved in this study, and as such, we have recommended future research avenues to do so.
Collapse
Affiliation(s)
- Kerryn L Grenfell
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Paul J Jacobs
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Daniel W Hart
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
5
|
Royzenblat S, Kulacic J, Friedrich M. Evidence of ancestral nocturnality, locomotor clock regression, and cave zone-adjusted sleep duration modes in a cave beetle. SUBTERRANEAN BIOLOGY 2023. [DOI: 10.3897/subtbiol.45.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The small carrion beetle Ptomaphagus hirtus is an abundant inhabitant of the exceptionally biodiverse Mammoth Cave system. Previous studies revealed negative phototaxis and the expression of biological clock genes in this microphthalmic cave beetle. Here we present results from probing P. hirtus for the entrainment of locomotor rhythms using the TriKinetics activity monitor setup. Although curtailed by low adjustment frequency of animals to the test environment, the data obtained from successfully monitoring two animals in constant darkness (DD) and six animals exposed to 12 hour light-dark cycles (LD) revealed a strong effect of light on locomotor activity in P. hirtus. In LD, activity was prevalent during the artificial night phases while close to absent during the presumptive day phases, suggesting conserved nocturnality. Upon transitioning LD animals to constant darkness, none displayed detectable evidence of free-running activity rhythms, suggesting complete regression of the central circadian clock. Equally notable, overall locomotor activity of the two DD-monitored animals was about three-fold lower compared to LD animals due to longer rest durations in the former. We, therefore, propose the existence of cave zone-specific energy expenditure modes that are mediated through light schedule responsive modification of sleep duration in P. hirtus.
Collapse
|
6
|
Hart DW, van Jaarsveld B, Lasch KG, Grenfell KL, Oosthuizen MK, Bennett NC. Ambient Temperature as a Strong Zeitgeber of Circadian Rhythms in Response to Temperature Sensitivity and Poor Heat Dissipation Abilities in Subterranean African Mole-Rats. J Biol Rhythms 2021; 36:461-469. [PMID: 34343446 DOI: 10.1177/07487304211034287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammals have evolved circadian rhythms in internal biological processes and behaviors, such as locomotor activity (LA), to synchronize to the environmental conditions they experience. Photic entrainment of LA has been well established; however, non-photic entrainment, such as ambient temperature (Ta), has received much less attention. To address this dearth of knowledge, we exposed two subterranean endothermic-homeothermic African mole-rat species, the solitary Cape mole-rat (Georychus capensis [GC]) and social Mahali mole-rat (Cryptomys hottentotus mahali [CHM]), to varying Ta cycles in the absence of light. We showed that the LA rhythms of these two species entrain to Ta cycles and that the majority of LA occurred during the coolest 12-h period. LA confined to the coolest Ta periods may be the direct consequence of the poor heat dissipation abilities of African mole-rats brought about by physiological and ecological constraints. Recently, it has been hypothesized that Ta is only a strong zeitgeber for circadian rhythms in species whose thermoregulatory abilities are sensitive to changes in Ta (i.e., heterotherms and ectotherms), which previously has excluded endothermic-homeothermic mammals. However, this study demonstrates that Ta is a strong zeitgeber or entrainer for circadian rhythms of LA in subterranean endothermic-homeothermic mammals as a consequence of their sensitivity to changes in Ta brought about by their poor heat dissipation abilities. This study reinforces the intimate link between circadian rhythms and thermoregulation and conclusively, for the first time, provides evidence that Ta is a strong zeitgeber for endothermic-homeothermic mammals.
Collapse
Affiliation(s)
- Daniel W Hart
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Barry van Jaarsveld
- Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
| | - Kiara G Lasch
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Kerryn L Grenfell
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Maria K Oosthuizen
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Mao Y, Shao F, Zhao Q, Peng Z. Molecular Evolution of clock Genes in Vertebrates. J Mol Evol 2021; 89:494-512. [PMID: 34297154 DOI: 10.1007/s00239-021-10020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/27/2021] [Indexed: 11/24/2022]
Abstract
Circadian rhythms not only influence the overall daily routine of organisms but also directly affect life activities to varying degrees. Circadian locomotor output cycle kaput (Clock), the most critical gene in the circadian rhythm feedback system, plays an important role in the regulation of biological rhythms. Here, we aimed to elucidate the evolutionary history of the clock gene family in a taxonomically diverse set of vertebrates, providing novel insights into the evolution of the clock gene family based on 102 vertebrate genomes. Using genome-wide analysis, we extracted 264 clock sequences. In lobe-finned fishes and some basal non-teleost ray-finned fishes, only two clock isotypes were found (clock1 and clock2). However, the majority of teleosts possess three clock genes (two clock1 genes and one clock2 gene) owing to extra whole-genome duplication. The following syntenic analysis confirmed that clock1a, clock1b, and clock2 are conserved in teleost species. Interestingly, we discovered that osteoglossomorph fishes possess two clock2 genes. Moreover, protein sequence comparisons indicate that CLOCK protein changes among vertebrates were concentrated at the N-terminal and poly Q regions. We also performed a dN/dS analysis, and the results suggest that clock1 and clock2 may show distinct fates for duplicated genes between the lobe-finned and ray-finned fish clades. Collectively, these results provide a genome-wide insight into clock gene evolution in vertebrates.
Collapse
Affiliation(s)
- Yang Mao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Qingyuan Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China.
| |
Collapse
|
8
|
Widely rhythmic transcriptome in Calanus finmarchicus during the high Arctic summer solstice period. iScience 2021; 24:101927. [PMID: 33385120 PMCID: PMC7770977 DOI: 10.1016/j.isci.2020.101927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
Solar light/dark cycles and seasonal photoperiods underpin daily and annual rhythms of life on Earth. Yet, the Arctic is characterized by several months of permanent illumination ("midnight sun"). To determine the persistence of 24h rhythms during the midnight sun, we investigated transcriptomic dynamics in the copepod Calanus finmarchicus during the summer solstice period in the Arctic, with the lowest diel oscillation and the highest altitude of the sun's position. Here we reveal that in these extreme photic conditions, a widely rhythmic daily transcriptome exists, showing that very weak solar cues are sufficient to entrain organisms. Furthermore, at extremely high latitudes and under sea-ice, gene oscillations become re-organized to include <24h rhythms. Environmental synchronization may therefore be modulated to include non-photic signals (i.e. tidal cycles). The ability of zooplankton to be synchronized by extremely weak diel and potentially tidal cycles, may confer an adaptive temporal reorganization of biological processes at high latitudes.
Collapse
|
9
|
Payton L, Noirot C, Hoede C, Hüppe L, Last K, Wilcockson D, Ershova EA, Valière S, Meyer B. Daily transcriptomes of the copepod Calanus finmarchicus during the summer solstice at high Arctic latitudes. Sci Data 2020; 7:415. [PMID: 33235200 PMCID: PMC7686379 DOI: 10.1038/s41597-020-00751-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Abstract
The zooplankter Calanus finmarchicus is a member of the so-called "Calanus Complex", a group of copepods that constitutes a key element of the Arctic polar marine ecosystem, providing a crucial link between primary production and higher trophic levels. Climate change induces the shift of C. finmarchicus to higher latitudes with currently unknown impacts on its endogenous timing. Here we generated a daily transcriptome of C. finmarchicus at two high Arctic stations, during the more extreme time of Midnight Sun, the summer solstice. While the southern station (74.5 °N) was sea ice-free, the northern one (82.5 °N) was sea ice-covered. The mRNAs of the 42 samples have been sequenced with an average of 126 ± 5 million reads (mean ± SE) per sample, and aligned to the reference transcriptome. We detail the quality assessment of the datasets and the complete annotation procedure, providing the possibility to investigate daily gene expression of this ecologically important species at high Arctic latitudes, and to compare gene expression according to latitude and sea ice-coverage.
Collapse
Affiliation(s)
- Laura Payton
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, 26111, Germany.
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany.
| | - Céline Noirot
- Plateforme bio-informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, F-31326, Castanet-Tolosan, France
| | - Claire Hoede
- Plateforme bio-informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, F-31326, Castanet-Tolosan, France
| | - Lukas Hüppe
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, 26111, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Oldenburg, 26111, Germany
| | - Kim Last
- Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, UK
| | - David Wilcockson
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Elizaveta A Ershova
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, N-9037, Norway
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36 Nakhimova Avenue, Moscow, Russian Federation, 117997, Russia
| | - Sophie Valière
- Plateforme Génomique, INRAE US 1426 GeT-PlaGe, Centre INRAE de Toulouse Occitanie, 24 Chemin de Borde Rouge, Auzeville, 31326, Castanet-Tolosan cedex, France
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, 26111, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Oldenburg, 26111, Germany
| |
Collapse
|
10
|
Tran D, Andrade H, Durier G, Ciret P, Leopold P, Sow M, Ballantine C, Camus L, Berge J, Perrigault M. Growth and behaviour of blue mussels, a re-emerging polar resident, follow a strong annual rhythm shaped by the extreme high Arctic light regime. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200889. [PMID: 33204461 PMCID: PMC7657935 DOI: 10.1098/rsos.200889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Polar regions are currently warming at a rate above the global average. One issue of concern is the consequences on biodiversity in relation to the Northward latitudinal shift in distribution of temperate species. In the present study, lasting almost two years, we examined two phenological traits, i.e. the shell growth and behavioural rhythm of a recently re-established species in the high Arctic, the blue mussel Mytilus sp. We compared this with a native species, the Islandic scallop Chlamys islandica. We show marked differences in the examined traits between the two species. In Mytilus sp., a clear annual pattern of shell growth strongly correlated to the valve behaviour rhythmicity, whereas C. islandica exhibited a shell growth pattern with a total absence of annual rhythmicity of behaviour. The shell growth was highly correlated to the photoperiod for the mussels but weaker for the scallops. The water temperature cycle was a very weak parameter to anticipate the phenology traits of both species. This study shows that the new resident in the high Arctic, Mytilus sp., is a highly adaptive species, and therefore a promising bioindicator to study the consequences of biodiversity changes due to global warming.
Collapse
Affiliation(s)
- Damien Tran
- University of Bordeaux, UMR 5805, F-33120 Arcachon, France
- CNRS, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Hector Andrade
- Akvaplan-niva AS, Fram – High North Centre for Climate and the Environment, Langnes, Postbox 6606, 9296 Tromsø, Norway
| | | | - Pierre Ciret
- University of Bordeaux, UMR 5805, F-33120 Arcachon, France
- CNRS, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Peter Leopold
- Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- University Centre in Svalbard, Pb 156, 9171 Longyearbyen, Norway
| | - Mohamedou Sow
- University of Bordeaux, UMR 5805, F-33120 Arcachon, France
| | - Carl Ballantine
- Akvaplan-niva AS, Fram – High North Centre for Climate and the Environment, Langnes, Postbox 6606, 9296 Tromsø, Norway
| | - Lionel Camus
- Akvaplan-niva AS, Fram – High North Centre for Climate and the Environment, Langnes, Postbox 6606, 9296 Tromsø, Norway
| | - Jørgen Berge
- Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- University Centre in Svalbard, Pb 156, 9171 Longyearbyen, Norway
- Department of Biology, Norwegian University of Science and Technology, Centre for Autonomous Marine Operations and Systems, NTNU
| | - Mickael Perrigault
- University of Bordeaux, UMR 5805, F-33120 Arcachon, France
- CNRS, EPOC, UMR 5805, F-33120 Arcachon, France
| |
Collapse
|
11
|
Hüppe L, Payton L, Last K, Wilcockson D, Ershova E, Meyer B. Evidence for oscillating circadian clock genes in the copepod Calanus finmarchicus during the summer solstice in the high Arctic. Biol Lett 2020; 16:20200257. [PMID: 32673547 PMCID: PMC7423037 DOI: 10.1098/rsbl.2020.0257] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The circadian clock provides a mechanism for anticipating environmental cycles and is synchronized by temporal cues such as daily light/dark cycle or photoperiod. However, the Arctic environment is characterized by several months of Midnight Sun when the sun is continuously above the horizon and where sea ice further attenuates photoperiod. To test if the oscillations of circadian clock genes remain in synchrony with subtle environmental changes, we sampled the copepod Calanus finmarchicus, a key zooplankter in the north Atlantic, to determine in situ daily circadian clock gene expression near the summer solstice at a southern (74.5° N) sea ice-free and a northern (82.5° N) sea ice-covered station. Results revealed significant oscillation of genes at both stations, indicating the persistence of the clock at this time. While copepods from the southern station showed oscillations in the daily range, those from the northern station exhibited an increase in ultradian oscillations. We suggest that in C. finmarchicus, even small daily changes of solar altitude seem to be sufficient to entrain the circadian clock and propose that at very high latitudes, in under-ice ecosystems, tidal cues may be used as an additional entrainment cue.
Collapse
Affiliation(s)
- Lukas Hüppe
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, 26111 Oldenburg, Germany.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Department of Biosciences, Section Polar Biological Oceanography, 27570 Bremerhaven, Germany
| | - Laura Payton
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Department of Biosciences, Section Polar Biological Oceanography, 27570 Bremerhaven, Germany
| | - Kim Last
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
| | - David Wilcockson
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Elizaveta Ershova
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9019 Tromsø, Norway.,Shirshov Institute of Oceanology, Russian Academy of Sciences, Russian Federation, 36 Nakhimova Avenue, Moscow 117997, Russia
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, 26111 Oldenburg, Germany.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Department of Biosciences, Section Polar Biological Oceanography, 27570 Bremerhaven, Germany
| |
Collapse
|
12
|
van Jaarsveld B, Bennett NC, Hart DW, Oosthuizen MK. Locomotor activity and body temperature rhythms in the Mahali mole-rat (C. h. mahali): The effect of light and ambient temperature variations. J Therm Biol 2019; 79:24-32. [DOI: 10.1016/j.jtherbio.2018.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
|
13
|
Mammola S, Isaia M. Day–night and seasonal variations of a subterranean invertebrate community in the twilight zone. SUBTERRANEAN BIOLOGY 2018. [DOI: 10.3897/subtbiol.27.28909] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Being characterized by the absence of light and a reduced environmental cyclicity, the subterranean domain is generally regarded as temporally stable. Yet, in the proximity of cave entrances (twilight zones), patterns of sunlight and darkness can be detected within the 24-hour day–night cycle. In parallel, changes in the abiotic and biotic conditions are expected; however, these patterns have been rarely explored in animal communities dwelling in the twilight zone. We performed a biological investigation in a small abandoned mine in the Western Alps, monitoring it once per season, both during the day and at night. At each survey, we collected data on the spatial distribution of the resident species, their activity patterns, and the main microclimatic parameters. We observed significant daily variations in the environmental conditions during winter and spring, namely higher temperature, relative humidity and availability of trophic resources at night. In conjunction with these disparate nocturnal conditions, the abundance of troglophile species was also higher, as well as the activity patterns of one of the most frequent species inhabiting the entrance area – the orb-weaver spiderMetamenardi. We further documented temporal changes in the composition of the parietal community, due to species using the mine as a diurnal, nocturnal or overwintering shelter. Overall, our results suggest that the communities of the twilight zone are not temporally stable and we highlight the importance of taking into account not only their seasonal, but also their daily variations.
Collapse
|