1
|
Sleurs C, Fletcher P, Mallucci C, Avula S, Ajithkumar T. Neurocognitive Dysfunction After Treatment for Pediatric Brain Tumors: Subtype-Specific Findings and Proposal for Brain Network-Informed Evaluations. Neurosci Bull 2023; 39:1873-1886. [PMID: 37615933 PMCID: PMC10661593 DOI: 10.1007/s12264-023-01096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/05/2023] [Indexed: 08/25/2023] Open
Abstract
The increasing number of long-term survivors of pediatric brain tumors requires us to incorporate the most recent knowledge derived from cognitive neuroscience into their oncological treatment. As the lesion itself, as well as each treatment, can cause specific neural damage, the long-term neurocognitive outcomes are highly complex and challenging to assess. The number of neurocognitive studies in this population grows exponentially worldwide, motivating modern neuroscience to provide guidance in follow-up before, during and after treatment. In this review, we provide an overview of structural and functional brain connectomes and their role in the neuropsychological outcomes of specific brain tumor types. Based on this information, we propose a theoretical neuroscientific framework to apply appropriate neuropsychological and imaging follow-up for future clinical care and rehabilitation trials.
Collapse
Affiliation(s)
- Charlotte Sleurs
- Department of Cognitive Neuropsychology, Tilburg University, 5037 AB, Tilburg, The Netherlands.
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium.
| | - Paul Fletcher
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Conor Mallucci
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, L14 5AB, UK
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's NHS Foundation Trust, Liverpool, L14 5AB, UK
| | - Thankamma Ajithkumar
- Department of Oncology, Cambridge University Hospital NHS Trust, Cambridge, CB2 0QQ, UK
| |
Collapse
|
2
|
Brown AL, Sok P, Raghubar KP, Lupo PJ, Richard MA, Morrison AC, Yang JJ, Stewart CF, Okcu MF, Chintagumpala MM, Gajjar A, Kahalley LS, Conklin H, Scheurer ME. Genetic susceptibility to cognitive decline following craniospinal irradiation for pediatric central nervous system tumors. Neuro Oncol 2023; 25:1698-1708. [PMID: 37038335 PMCID: PMC10479777 DOI: 10.1093/neuonc/noad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Survivors of pediatric central nervous system (CNS) tumors treated with craniospinal irradiation (CSI) exhibit long-term cognitive difficulties. Goals of this study were to evaluate longitudinal effects of candidate and novel genetic variants on cognitive decline following CSI. METHODS Intelligence quotient (IQ), working memory (WM), and processing speed (PS) were longitudinally collected from patients treated with CSI (n = 241). Genotype-by-time interactions were evaluated using mixed-effects linear regression to identify common variants (minor allele frequency > 1%) associated with cognitive performance change. Novel variants associated with cognitive decline (P < 5 × 10-5) in individuals of European ancestry (n = 163) were considered replicated if they demonstrated consistent genotype-by-time interactions (P < .05) in individuals of non-European ancestries (n = 78) and achieved genome-wide statistical significance (P < 5 × 10-8) in a meta-analysis across ancestry groups. RESULTS Participants were mostly males (65%) diagnosed with embryonal tumors (98%) at a median age of 8.3 years. Overall, 1150 neurocognitive evaluations were obtained (median = 5, range: 2-10 per participant). One of the five loci previously associated with cognitive outcomes in pediatric CNS tumors survivors demonstrated significant time-dependent IQ declines (PPARA rs6008197, P = .004). Two variants associated with IQ in the general population were associated with declines in IQ after Bonferroni correction (rs9348721, P = 1.7 × 10-5; rs31771, P = 7.8 × 10-4). In genome-wide analyses, we identified novel loci associated with accelerated declines in IQ (rs116595313, meta-P = 9.4 × 10-9), WM (rs17774009, meta-P = 4.2 × 10-9), and PS (rs77467524, meta-P = 1.5 × 10-8; rs17630683, meta-P = 2.0 × 10-8; rs73249323, meta-P = 3.1 × 10-8). CONCLUSIONS Inherited genetic variants involved in baseline cognitive functioning and novel susceptibility loci jointly influence the degree of treatment-associated cognitive decline in pediatric CNS tumor survivors.
Collapse
Affiliation(s)
- Austin L Brown
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Pagna Sok
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | | | - Philip J Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Melissa A Richard
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Clinton F Stewart
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Mehmet Fatih Okcu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | | | - Amar Gajjar
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lisa S Kahalley
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Heather Conklin
- Psychology Department, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
3
|
Kautiainen R, Aleksonis H, King TZ. A Systematic Review of Host Genomic Variation and Neuropsychological Outcomes for Pediatric Cancer Survivors. Neuropsychol Rev 2023; 33:278-306. [PMID: 35305234 DOI: 10.1007/s11065-022-09539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/25/2022] [Indexed: 10/18/2022]
Abstract
Pediatric survivors of brain tumors and acute lymphoblastic leukemia (ALL) are at risk for long-term deficits in their neuropsychological functioning. Researchers have begun examining associations between germline single nucleotide polymorphisms (SNPs), which interact with cancer treatment, and neuropsychological outcomes. This review synthesizes the impact of treatment-related toxicity from germline SNPs by neuropsychological domain (i.e., working memory, processing speed, psychological functioning) in pediatric survivors. By focusing on specific neuropsychological domains, this review will examine outcome measurement and critique methodology. Fourteen studies were identified and included in this review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). All studies were published in peer-reviewed journals in English by November 24th, 2021. Reviewed studies were not of sufficient quality for a meta-analysis due to varying measurement strategies, gaps in reported descriptive variables, and low power. All neuropsychological domains evaluated in this review had associations with SNPs, except fine motor and visual integration abilities. Only five SNPs had consistent neuropsychological findings in more than one study or cohort. Future research and replication studies should use validated measures of discrete skills that are central to empirically validated models of survivors' long-term outcomes (i.e., attention, working memory, processing speed). Researchers should examine SNPs across pathophysiological pathways to investigate additive genetic risk in pediatric cancer survivors. Two SNPs were identified that confer resiliency in neuropsychological functioning, and future work should investigate resiliency genotypes and their underlying biological mechanisms.
Collapse
Affiliation(s)
- Rella Kautiainen
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Holly Aleksonis
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Tricia Z King
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
4
|
microRNA-155-3p delivered by M2 macrophages-derived exosomes enhances the progression of medulloblastoma through regulation of WDR82. J Transl Med 2022; 20:13. [PMID: 34983581 PMCID: PMC8728908 DOI: 10.1186/s12967-021-03156-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/19/2021] [Indexed: 01/12/2023] Open
Abstract
Objective Exosomes, membranous nanovesicles, naturally bringing proteins, mRNAs, and microRNAs (miRNAs), play crucial roles in tumor pathogenesis. This study was to investigate the role of miR-155-3p from M2 macrophages-derived exosomes (M2-Exo) in promoting medulloblastoma (MB) progression by mediating WD repeat domain 82 (WDR82). Methods miR-155-3p expression was detected by RT-qPCR. The relationship of miR-155-3p with clinicopathological features of MB patients was analyzed. M2-Exo were isolated and identified by TEM, NTA and Western blot. CCK-8 assay, colony formation assay, flow cytometry, wound healing assay, and Transwell assay were performed to explore the role of miR-155-3p-enriched M2-Exo on the progression of MB cells. Luciferase assay were used to identify the relationship between miR-155-3p and WDR82. The effect of miR-155-3p-enriched M2-Exo on tumorigenesis of MB was confirmed by the xenograft nude mice model. Results miR-155-3p was up-regulated in MB tissues of patients and MB cell lines. High miR-155-3p expression was correlated with the pathological type and molecular subtype classification of MB patients. WDR82 was a direct target of miR-155-3p. miR-155-3p was packaged into M2-Exo. miR-155-3p-enriched M2-Exo promoted the progression of Daoy cells. miR-155-3p-enriched M2-Exo promoted in vivo tumorigenesis. Conclusion The study highlights that miR-155-3p-loaded M2-Exo enhances the growth of MB cells via down-regulating WDR82, which might provide a deep insight into MB mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03156-y.
Collapse
|
5
|
Kautiainen RJ, Keeler C, Dwivedi B, MacDonald TJ, King TZ. MTHFR single nucleotide polymorphism associated with working memory in pediatric medulloblastoma survivors. Child Neuropsychol 2021; 28:287-301. [PMID: 34448443 DOI: 10.1080/09297049.2021.1970736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background Associations have been found between single nucleotide polymorphisms (SNPs) in the MTHFR gene and cognitive outcomes in cancer survivors. Prior research has demonstrated that the presence of MTHFR SNPs (rs1801131 and rs1801133) in survivors of acute lymphoblastic leukemia (ALL) corresponds to impairments in attention and executive functioning. The current study examines the associations between rs1801131 and/or rs1801133 SNPs and cognitive performance in long-term survivors of medulloblastoma. Procedure: Eighteen pediatric medulloblastoma survivors, on average 12.42 years post-diagnosis, completed the Digit Span Forward, Digit Span Backward, California Verbal Learning Test Trial 1, and Auditory Consonant Trigrams tests. MTHFR SNPs were detected using whole genome sequencing data and custom scripts within R software. Results: Survivors with a rs1801131 SNP performed significantly worse on Digit Span Backward than survivors without this SNP exhibiting a large effect (p = 0.049; d = 0.95). Survivors with a rs1801131 SNP performed worse on Digit Span Forward (d = 0.478) and the CVLT Trial 1 (d = 0.417) with medium effect sizes. In contrast to rs1801131, relationships were not identified between a rs1801133 SNP and these performance measures. Conclusions Our findings demonstrate the potential links between MTHFR SNPs and cognitive outcomes following treatment in brain tumor survivors. The current findings establish a novel relationship between rs1801131 and working memory in medulloblastoma. Increases in homocysteine levels and oxidative damage from radiation may lead to adverse long-term outcomes. This establishes the need to look beyond leukemia and methotrexate treatment to consider the risk of MTHFR SNPs for medulloblastoma survivors.
Collapse
Affiliation(s)
| | - Courtney Keeler
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tobey J MacDonald
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta GA, USA.,Emory University Medical School, Atlanta, GA, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
6
|
Graph Theoretical Analysis of Brain Network Characteristics in Brain Tumor Patients: A Systematic Review. Neuropsychol Rev 2021; 32:651-675. [PMID: 34235627 DOI: 10.1007/s11065-021-09512-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/23/2021] [Indexed: 10/20/2022]
Abstract
Graph theory is a branch of mathematics that allows for the characterization of complex networks, and has rapidly grown in popularity in network neuroscience in recent years. Researchers have begun to use graph theory to describe the brain networks of individuals with brain tumors to shed light on disrupted networks. This systematic review summarizes the current literature on graph theoretical analysis of magnetic resonance imaging data in the brain tumor population with particular attention paid to treatment effects and other clinical factors. Included papers were published through June 24th, 2020. Searches were conducted on Pubmed, PsycInfo, and Web of Science using the search terms (graph theory OR graph analysis) AND (brain tumor OR brain tumour OR brain neoplasm) AND (MRI OR EEG OR MEG). Studies were eligible for inclusion if they: evaluated participants with a primary brain tumor, used graph theoretical analyses on structural or functional MRI data, MEG, or EEG, were in English, and were an empirical research study. Seventeen papers met criteria for inclusion. Results suggest alterations in network properties are often found in people with brain tumors, although the directions of differences are inconsistent and few studies reported effect sizes. The most consistent finding suggests increased network segregation. Changes are most prominent with more intense treatment, in hub regions, and with factors such as faster tumor growth. The use of graph theory to study brain tumor patients is in its infancy, though some conclusions can be drawn. Future studies should focus on treatment factors, changes over time, and correlations with functional outcomes to better identify those in need of early intervention.
Collapse
|
7
|
Prysyazhnyuk V, Sydorchuk L, Sydorchuk R, Prysiazhniuk I, Bobkovych K, Buzdugan I, Dzuryak V, Prysyazhnyuk P. Glutathione-S-transferases genes-promising predictors of hepatic dysfunction. World J Hepatol 2021; 13:620-633. [PMID: 34239698 PMCID: PMC8239493 DOI: 10.4254/wjh.v13.i6.620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most commonly known genes involved in chronic diffuse liver diseases pathogenesis are genes that encodes the synthesis of glutathione-S-transferase (GST), known as the second phase enzyme detoxification system that protects against endogenous oxidative stress and exogenous toxins, through catalisation of glutathione sulfuric groups conjugation and decontamination of lipid and deoxyribonucleic acid oxidation products. The group of GST enzymes consists of cytosolic, mitochondrial and microsomal fractions. Recently, eight classes of soluble cytoplasmic isoforms of GST enzymes are widely known: α-, ζ-, θ-, κ-, μ-, π-, σ-, and ω-. The GSTs gene family in the Human Gene Nomenclature Committee, online database recorded over 20 functional genes. The level of GSTs expression is considered to be a crucial factor in determining the sensitivity of cells to a broad spectrum of toxins. Nevertheless, human GSTs genes have multiple and frequent polymorphisms that include the complete absence of the GSTM1 or the GSTT1 gene. Current review supports the position that genetic polymorphism of GST genes is involved in the pathogenesis of various liver diseases, particularly non-alcoholic fatty liver disease, hepatitis and liver cirrhosis of different etiology and hepatocellular carcinoma. Certain GST allelic variants were proven to be associated with susceptibility to hepatological pathology, and correlations with the natural course of the diseases were subsequently postulated.
Collapse
Affiliation(s)
- Vasyl Prysyazhnyuk
- Department of Propedeutics of Internal Diseases, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Larysa Sydorchuk
- Department of Family Medicine, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Ruslan Sydorchuk
- Department of Surgery, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Iryna Prysiazhniuk
- Department of Internal Medicine and Invectious Diseases, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Kateryna Bobkovych
- Department of Propedeutics of Internal Diseases, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Inna Buzdugan
- Department of Internal Medicine and Invectious Diseases, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Valentina Dzuryak
- Department of Family Medicine, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Petro Prysyazhnyuk
- Department of Medical and Pharmaceutical Chemistry, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| |
Collapse
|
8
|
Mandic-Maravic V, Mitkovic-Voncina M, Pljesa-Ercegovac M, Savic-Radojevic A, Djordjevic M, Ercegovac M, Pekmezovic T, Simic T, Pejovic-Milovancevic M. Glutathione S-Transferase Polymorphisms and Clinical Characteristics in Autism Spectrum Disorders. Front Psychiatry 2021; 12:672389. [PMID: 34248709 PMCID: PMC8267579 DOI: 10.3389/fpsyt.2021.672389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Autism spectrum disorders (ASD) are a heterogeneous group of developmental disorders, with different levels of symptoms, functioning, and comorbidities. Recent findings suggested that oxidative stress and genetic variability in glutathione S-transferases (GSTs) might increase the risk of ASD development. We aimed to determine whether GST polymorphisms influence the severity of symptoms as well as the cognitive and adaptive abilities in children with ASD. Methods: The sample included 113 ASD cases. All participants were genotyped for GSTA1, GSTM1, GSTT1, and GSTP1 polymorphisms. The clinical characteristics were determined with Autism Diagnostic Interview-Revised (ADI-R) in all of the participants. In non-verbal participants, we explored the adaptive functioning using the Vineland Adaptive Behavior Scale II, while in verbal participants, we used the Wechsler Abbreviated Scale of Intelligence (WASI). Results: It was shown that the GSTA1 * CC genotype was a predictor of a lower non-verbal communication impairment as well as of a lower chance of having seizures during life. GSTM1-active genotype predicted a higher adaptive functioning. The predictive effect of GSTA1, GSTM1, and GSTT1 genotype was moderated by exposure during pregnancy (maternal smoking and medication). The GSTP1 * IleIle genotype was significantly associated to a better cognitive functioning in children with ASD. Conclusion: Besides the complex gene-environment interaction for the specific risk of developing ASD, there is also a possible complexity of interactions between genetic and environmental factors influencing the level of symptoms and impairment in people with ASD. Detoxification and antioxidant enzymes, such as GSTA1, might contribute to the core of this complexity.
Collapse
Affiliation(s)
- Vanja Mandic-Maravic
- Institute of Mental Health, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Mitkovic-Voncina
- Institute of Mental Health, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Pljesa-Ercegovac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Medical and Clinical Biochemistry, Belgrade, Serbia
| | - Ana Savic-Radojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Medical and Clinical Biochemistry, Belgrade, Serbia
| | - Miroslav Djordjevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- University Children's Hospital, Belgrade, Serbia
| | - Marko Ercegovac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic of Neurology, Clinical Center of Serbia, Belgrade, Serbia
| | - Tatjana Pekmezovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Epidemiology, Belgrade, Serbia
| | - Tatjana Simic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Medical and Clinical Biochemistry, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | | |
Collapse
|
9
|
Stadskleiv K, Stensvold E, Stokka K, Bechensteen AG, Brandal P. Neuropsychological functioning in survivors of childhood medulloblastoma/CNS-PNET: The role of secondary medical complications. Clin Neuropsychol 2020; 36:600-625. [PMID: 32729777 DOI: 10.1080/13854046.2020.1794045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the long-term cognitive consequences of malignant pediatric brain tumor and its treatment, and factors explaining variability in cognitive functioning among survivors. Method: A geographical cohort of survivors of pediatric medulloblastoma (MB) and supratentorial primitive neuroectodermal tumor (CNS-PNET), treated between 1974 and 2013, was invited to participate. Of the 63 surviving patients, 50 (79%) consented to participation. The participants were tested with a battery of neuropsychological tests covering a wide age range. Verbal cognition, nonverbal cognition, processing speed, attention, memory, executive functioning, and manual dexterity were assessed. The participants were between 5:5 and 51:11 years of age at time of assessment. Assessments took place on average 19 years after primary tumor resective surgery. Results: One participant had a severe intellectual disability. For the rest, IQ varied from 52 to 125, with a mean score of 88.0 (SD 19.7). Twenty-eight (56%) of the participants had full-scale IQ scores in the age-average range or above. Gender, age at operation, time since operation, the presence of secondary medical complications, and treatment variables explained 46% of the variability in IQ scores, F(4,44) = 9.5, p<.001. The presence of endocrine insufficiency in combination with either epilepsy and/or hydrocephalus was associated with lowered IQ, lowered processing speed, and memory impairments. Conclusion: Patients treated for childhood MB and CNS-PNET have a lifelong risk of medical sequelae, including impaired cognitive functioning. This study adds to the literature by demonstrating the importance of following neuropsychological functioning closely, especially processing speed, learning, and memory, in survivors who have multiple secondary medical complications.
Collapse
Affiliation(s)
- Kristine Stadskleiv
- Department of Special Needs Education, University of Oslo, Oslo, Norway.,Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway
| | - Einar Stensvold
- The Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway.,Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | - Kjersti Stokka
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|