1
|
Lin S, Simal-Gandara J, Cao H, Xiao J. The stability and degradation products of polyhydroxy flavonols in boiling water. Curr Res Food Sci 2023; 6:100509. [PMID: 37229311 PMCID: PMC10205440 DOI: 10.1016/j.crfs.2023.100509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Polyhydroxy flavonols readily degraded during thermal processing. In this study, the UPLC-Q-tof-MS/MS was applied to explore the stability of dietary polyhydroxy flavonols, myricetin, kaempferol, galangin, fisetin, myricitrin, quercitrin and rutin, in boiling water. The decomposition of flavonols was mainly caused by the heterocyclic ring C opening to form simpler aromatic compounds. The degradation products mainly included 1,3,5-benzenetriol, 3,4,5-trihydroxybenzoic acid, 2,4,6-trihydroxybenzoic acid and 2,4,6-trihydroxybenzaldehyde, etc. Compared with myricetin with a pyrogallol-type structure on the ring B, the glycoside in myricitrin slightly affects the stability. However, the glycosides in rutin and quercitrin dramatically improved the stability in water. During the boiling process, flavonols underwent a series of chemical reactions, such as hydroxylation, dehydroxylation, deglycosidation, deprotonation, and C-ring cleavage.
Collapse
Affiliation(s)
- Shiye Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain
| |
Collapse
|
2
|
Silva BR, Silva JRV. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim Reprod Sci 2023; 249:107186. [PMID: 36638648 DOI: 10.1016/j.anireprosci.2022.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
In vitro follicle growth and oocyte maturation still has a series of limitations, since not all oocytes matured in vitro have the potential to develop in viable embryos. One of the factors associated with low oocyte quality is the generation of reactive oxygen species (ROS) during in vitro culture. Therefore, this review aims to discuss the role of non-enzymatic antioxidants in the control of oxidative stress during in vitro follicular growth, oocyte maturation and embryonic development. A wide variety of non-enzymatic antioxidants (melatonin, resveratrol, L-ascorbic acid, L-carnitine, N-acetyl-cysteine, cysteamine, quercetin, nobiletin, lycopene, acteoside, mogroside V, phycocyanin and laminarin) have been used to supplement culture media. Some of them, like N-acetyl-cysteine, cysteamine, nobiletin and quercetin act by increasing the levels of glutathione (GSH), while melatonin and resveratrol increase the expression of antioxidant enzymes and minimize oocyte oxidative stress. L-ascorbic acid reduces free radicals and reactive oxygen species. Lycopene positively regulates the expression of many antioxidant genes. Additionally, L-carnitine protects DNA against ROS-induced damage, while acteoside and laminarin reduces the expression of proapoptotic genes. Mogrosides increases mitochondrial function and reduces intracellular ROS levels, phycocyanin reduces lipid peroxidation, and lycopene neutralizes the adverse effects of ROS. Thus, it is very important to know their mechanisms of actions, because the combination of two or more antioxidants with different activities has great potential to improve in vitro culture systems.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil
| | - José R V Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil.
| |
Collapse
|
3
|
Najafi M, Tavakol S, Zarrabi A, Ashrafizadeh M. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: a review. Arch Physiol Biochem 2022; 128:1438-1452. [PMID: 32521182 DOI: 10.1080/13813455.2020.1773864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemotherapy has opened a new window in cancer therapy. However, the resistance of cancer cells has dramatically reduced the efficacy of chemotherapy. Cisplatin is a chemotherapeutic agent and its potential in cancer therapy has been restricted by resistance of cancer cells. As a consequence, the scientists have attempted to find new strategies in elevating chemotherapy efficacy. Due to great anti-tumour activity, naturally occurring compounds are of interest in polychemotherapy. Quercetin is a flavonoid with high anti-tumour activity against different cancers that can be used with cisplatin to enhance its efficacy and also are seen to sensitise cancer cells into chemotherapy. Furthermore, cisplatin has side effects such as nephrotoxicity and ototoxicity. Administration of quercetin is advantageous in reducing the adverse effects of cisplatin without compromising its anti-tumour activity. In this review, we investigate the dual role of quercetin in enhancing anti-tumour activity of cisplatin and simultaneous reduction in its adverse effects.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Wang B, Xie W, Lu X, Song J, Liang H. The Effect and Mechanism of External Use Ulcer Powder on Diabetic Mice. Cureus 2022; 14:e26903. [PMID: 35989741 PMCID: PMC9378942 DOI: 10.7759/cureus.26903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/05/2022] Open
Abstract
Objective Through the preparation of the diabetic mice skin ulcer model, we investigated the effect of Mongolian medicine external ulcer powder (WYK) on the treatment of diabetic skin ulcers and the expression of angiogenesis-related factors such as vascular endothelial growth factor (VEGF) and extracellular regulated protein kinases (ERK). Methods Thirty male clean Kunming mice were randomly divided into normal control group (group C), diabetic control group (group HC), and diabetic topical ulcer powder group (group HW). After successful modeling in the HC group and the HW group, the rats in the HW group were given external ulcer powder, which was applied to the back of the mice once a day. In addition, the rats in group C and group HC were treated with gentamicin injection external application once a day. The mice were sacrificed on the 3rd, the sixth, and the ninth day of dosing, and samples were taken. The adopted methods included protein immunoblotting (western blot) and reverse transcription-polymerase chain reaction (RT-PCR). The expression differences of angiogenesis-related factors such as VEGF and ERK in the repair process were detected. SPSS 13 software was used to analyze the results of angiogenesis-related factors VEGF and ERK. Results Comparison of VEGF and ERK Contents The serum VEGF content of mice in the HC group was significantly lower than that in the C group on days 3, 6, and 9 (p <0.05). The VEGF content in the HW group was significantly higher than that in the HC group (p <0.05). The content of ERK in serum was basically consistent with that of VEGF. The results of the western blot assay were consistent with those of the RT-PCR assay. Conclusion WYK can effectively promote the healing of skin ulcer wounds in diabetic mice, accelerate the proliferation of granulation tissue, enrich the contents of capillary blood tubes and collagen fibers, and increase the microvascular content. WYK can improve the expression level of VEGF and ERK in the serum of mice and advance the peak value of protein expression.
Collapse
Affiliation(s)
- Bingyang Wang
- Department of Pathology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, CHN
| | - Wenlin Xie
- Department of Pathology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, CHN
| | - Xiaofang Lu
- Department of Pathology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, CHN
| | - Jian Song
- Department of Pathology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, CHN
| | - Hongsen Liang
- Department of Thoracic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, CHN
| |
Collapse
|
5
|
Network Pharmacology-Based Prediction and Verification of the Potential Mechanisms of He's Yangchao Formula against Diminished Ovarian Reserve. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8361808. [PMID: 35707481 PMCID: PMC9192314 DOI: 10.1155/2022/8361808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022]
Abstract
Background He's Yangchao formula (HSYC) has been clinically proven to be effective in treating diminished ovarian reserve (DOR). However, the underlying molecular mechanisms of HSYC in DOR are unclear. Objective This study aims to predict the underlying mechanisms of He's Yangchao formula (HSYC) against DOR through network pharmacology strategies and verify in vivo. Methods Systematic network pharmacology was used to speculate the bioactive components, potential targets, and the underlying mechanism of HSYC in the treatment of DOR. Then, the CTX-induced DOR mouse model was established to verify the effect of HSYC against DOR and the possible molecular mechanisms as predicted in the network pharmacology approach. Results A total of 44 active components and 423 potential targets were obtained in HSYC. In addition, 91 targets of DOR were also screened. The identified hub genes were AKT1, ESR1, IL6, and P53. Further molecular docking showed that the four hub targets were well-bound with their corresponding compounds. In vivo experiments showed that HSYC could promote the recovery of the estrous cycle and increase the number of primordial, growing follicles and corpora lutea. Besides, The results of qRT-PCR showed HSYC could regulate the expression of AKT1, ESR1, P53, and IL6 in DOR mice. Conclusion It was demonstrated that HSYC could increase ovarian reserves, and AKT1, ESR1, IL6, and P53 may play an essential role in this effect, which provided a new reference for the current lack of active interventions of DOR.
Collapse
|
6
|
Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, Chang X, Zhang Q. The Role of Oxidative Stress and Natural Antioxidants in Ovarian Aging. Front Pharmacol 2021; 11:617843. [PMID: 33569007 PMCID: PMC7869110 DOI: 10.3389/fphar.2020.617843] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The ovarian system comprises vital organs in females and is of great significance for the maintenance of reproductive potential and endocrine stability. Although complex pathogenesis undoubtedly contributes to ovarian aging, increasing attention is being paid to the extensive influence of oxidative stress. However, the role of oxidative stress in ovarian aging is yet to be fully elucidated. Exploring oxidative stress-related processes might be a promising strategy against ovarian aging. In this review, compelling evidence is shown that oxidative stress plays a role in the etiology of ovarian aging and promotes the development of other ovarian aging-related etiologies, including telomere shortening, mitochondrial dysfunction, apoptosis, and inflammation. In addition, some natural antioxidants such as quercetin, resveratrol, and curcumin have a protective role in the ovaries through multiple mechanisms. These findings raise the prospect of oxidative stress modulator-natural antioxidants as therapeutic interventions for delaying ovarian aging.
Collapse
Affiliation(s)
- Liuqing Yang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Chen
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Liu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Xing
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyun Miao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qin Zhang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|