1
|
Wang Z, Ma H, Chen C, Sun R, Liu K, Zhang B, Fang G. Consistency in responses to conspecific advertisement calls with various signal-to-noise ratios in both sexes of the Anhui tree frog. Curr Zool 2023; 69:718-726. [PMID: 37876647 PMCID: PMC10591154 DOI: 10.1093/cz/zoac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 10/26/2023] Open
Abstract
Environmental noise has a significant negative impact on acoustic communication in most situations, as it influences the production, transmission, and reception of acoustic signals. However, how animals respond to conspecific sounds when there is interference from environmental noise, and whether males and females display convergent behavioral responses in the face of noise masking remain poorly understood. In this study, we investigated the effects of conspecific male advertisement calls with different signal-to-noise ratios on male-male competition and female choice in the Anhui tree frog Rhacophorus zhoukaiyae using playback and phonotaxis experiments, respectively. The results showed that (1) female Anhui tree frogs preferentially selected the conspecific calls with higher SNR compared to calls with lower SNR; (2) males preferentially responded vocally to the conspecific calls with higher SNR compared to calls with lower SNR; and (3) males' competitive strategies were flexible in the face of noise interference. These results suggest that preferences of both sexes converge in outcome, and that male competitive strategies may depend on predictable female preferences. This study will provide an important basis for further research on decision-making in animals.
Collapse
Affiliation(s)
- Zhiyue Wang
- School of Life Science, Anhui University, Hefei 230601, China
- Thematic Area of Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Haohao Ma
- School of Life Science, Anhui University, Hefei 230601, China
| | - Cheng Chen
- School of Life Science, Anhui University, Hefei 230601, China
| | - Ruolei Sun
- School of Life Science, Anhui University, Hefei 230601, China
- Thematic Area of Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Kai Liu
- School of Life Science, Anhui University, Hefei 230601, China
| | - Baowei Zhang
- School of Life Science, Anhui University, Hefei 230601, China
| | - Guangzhan Fang
- Thematic Area of Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
2
|
Fang K, Tang Y, Zhang B, Fang G. Neural activities in music frogs reveal call variations and phylogenetic relationships within the genus Nidirana. Commun Biol 2022; 5:550. [PMID: 35668095 PMCID: PMC9170687 DOI: 10.1038/s42003-022-03504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
The characteristics of acoustic signals co-evolve with preferences of the auditory sensory system. However, how the brain perceives call variations and whether it can reveal phylogenetic relationships among signalers remains poorly understood. Here, we recorded the neural signals from the Emei music frogs (Nidirana daunchina) in response to broadcasted calls of five different species of the same genus. We found that responses in terms of the different amplitudes of various event-related potential (ERP) components were correlated with diversification trends in acoustic signals, as well as phylogenetic relationships between N. daunchina and heterospecific callers. Specifically, P2 decreased gradually along the ordinal decline of similarities in acoustic characteristics of calls compared with those from conspecifics. Moreover, P3a amplitudes showed increasing trends in correspondence with callers' genetic distances from the subject species. These observations collectively support the view that neural activities in music frogs can reflect call variations and phylogenetic relationships within the genus Nidirana.
Collapse
Affiliation(s)
- Ke Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041, Chengdu, Sichuan, China
- School of Life Science, Anhui University, No. 111 Jiulong Road, 230601, Hefei, Anhui, China
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, 210016, Nanjing, Jiangsu, China
| | - Yezhong Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041, Chengdu, Sichuan, China
| | - Baowei Zhang
- School of Life Science, Anhui University, No. 111 Jiulong Road, 230601, Hefei, Anhui, China
| | - Guangzhan Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041, Chengdu, Sichuan, China.
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, No. 1 Shida Road, 637009, Nanchong, Sichuan, China.
| |
Collapse
|
3
|
Fan Y, Fang K, Sun R, Shen D, Yang J, Tang Y, Fang G. Hierarchical auditory perception for species discrimination and individual recognition in the music frog. Curr Zool 2021; 68:581-591. [DOI: 10.1093/cz/zoab085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
The ability to discriminate species and recognize individuals is crucial for reproductive success and/or survival in most animals. However, the temporal order and neural localization of these decision-making processes has remained unclear. In this study, event-related potentials (ERPs) were measured in the telencephalon, diencephalon, and mesencephalon of the music frog Nidirana daunchina. These ERPs were elicited by calls from 1 group of heterospecifics (recorded from a sympatric anuran species) and 2 groups of conspecifics that differed in their fundamental frequencies. In terms of the polarity and position within the ERP waveform, auditory ERPs generally consist of 4 main components that link to selective attention (N1), stimulus evaluation (P2), identification (N2), and classification (P3). These occur around 100, 200, 250, and 300 ms after stimulus onset, respectively. Our results show that the N1 amplitudes differed significantly between the heterospecific and conspecific calls, but not between the 2 groups of conspecific calls that differed in fundamental frequency. On the other hand, the N2 amplitudes were significantly different between the 2 groups of conspecific calls, suggesting that the music frogs discriminated the species first, followed by individual identification, since N1 and N2 relate to selective attention and stimuli identification, respectively. Moreover, the P2 amplitudes evoked in females were significantly greater than those in males, indicating the existence of sexual dimorphism in auditory discrimination. In addition, both the N1 amplitudes in the left diencephalon and the P2 amplitudes in the left telencephalon were greater than in other brain areas, suggesting left hemispheric dominance in auditory perception. Taken together, our results support the hypothesis that species discrimination and identification of individual characteristics are accomplished sequentially, and that auditory perception exhibits differences between sexes and in spatial dominance.
Collapse
Affiliation(s)
- Yanzhu Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- School of Life Science, Anhui University, Hefei 230601, China
| | - Ruolei Sun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- School of Life Science, Anhui University, Hefei 230601, China
| | - Di Shen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yezhong Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangzhan Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Recognising the key role of individual recognition in social networks. Trends Ecol Evol 2021; 36:1024-1035. [PMID: 34256987 DOI: 10.1016/j.tree.2021.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022]
Abstract
Many aspects of sociality rely on individuals recognising one another. Understanding how, when, and if individuals recognise others can yield insights into the foundations of social relationships and behaviours. Through synthesising individual recognition research in different sensory and social domains, and doing so across various related social contexts, we propose that a social network perspective can help to uncover how individual recognition may vary across different settings, species, and populations. Specifically, combining individual recognition with social networks has unrecognised potential for determining the level and relative importance of individual recognition complexity. This will provide insights not only on the ecology and evolution of individual recognition itself, but also on social structure, social transmission, and social interactions such as cooperation.
Collapse
|
5
|
Zhang H, Zhu B, Zhou Y, He Q, Sun X, Wang J, Cui J. Females and males respond differently to calls impaired by noise in a tree frog. Ecol Evol 2021; 11:9159-9167. [PMID: 34257950 PMCID: PMC8258198 DOI: 10.1002/ece3.7761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Both human and nonhuman animals communicating acoustically face the problem of noise interference, especially anurans during mating activities. Previous studies concentrated on the effect of continuous noise on signal recognition, but it is still unknown whether different notes in advertisement calls impaired by noise affect female choice and male-male competition or not. In this study, we tested female preferences and male-evoked vocal responses in serrate-legged small tree frog (Kurixalus odontotarsus), by broadcasting the five-note advertisement call and the advertisement call with the second, third, or fourth note replaced by noise, respectively. In phonotaxis experiments, females significantly discriminated against the advertisement call with the fourth note impaired by noise, although they did not discriminate against other two calls impaired by noise, which indicates that the negative effect of noise on female preference is related to the order of impaired notes in the advertisement call. In playback experiments, males increased the total number of notes in response to noise-impaired calls compared with spontaneous calls. More interestingly, the vocal responses evoked by noise-impaired calls were generally similar to those evoked by complete advertisement calls, suggesting that males may recognize the noise-impaired calls as complete advertisement calls. Taken together, our study shows that different notes in advertisement calls replaced by noise have distinct effects on female choice and male-male competition.
Collapse
Affiliation(s)
- Haodi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bicheng Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Ya Zhou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiaoling He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoqian Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Jianguo Cui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| |
Collapse
|
6
|
Fan Y, Yue X, Yang J, Shen J, Shen D, Tang Y, Fang G. Preference of spectral features in auditory processing for advertisement calls in the music frogs. Front Zool 2019; 16:13. [PMID: 31168310 PMCID: PMC6509768 DOI: 10.1186/s12983-019-0314-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Animal vocal signals encode very important information for communication during which the importance of temporal and spectral characteristics of vocalizations is always asymmetrical and species-specific. However, it is still unknown how auditory system represents this asymmetrical and species-specific patterns. In this study, auditory event related potential (ERP) changes were evaluated in the Emei music frog (Babina daunchina) to assess the differences in eliciting neural responses of both temporal and spectral features for the telencephalon, diencephalon and mesencephalon respectively. To do this, an acoustic playback experiment using an oddball paradigm design was conducted, in which an original advertisement call (OC), its spectral feature preserved version (SC) and temporal feature preserved version (TC) were used as deviant stimuli with synthesized white noise as standard stimulus. RESULTS The present results show that 1) compared with TC, more similar ERP components were evoked by OC and SC; and 2) the P3a amplitudes in the forebrain evoked by OC were significantly higher in males than in females. CONCLUSIONS Together, the results provide evidence for suggesting neural processing for conspecific vocalization may prefer to the spectral features in the music frog, prompting speculation that the spectral features may play more important roles in auditory object perception or vocal communication in this species. In addition, the neural processing for auditory perception is sexually dimorphic.
Collapse
Affiliation(s)
- Yanzhu Fan
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Xizi Yue
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
| | - Jing Yang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Jiangyan Shen
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Di Shen
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Yezhong Tang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
| | - Guangzhan Fang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
| |
Collapse
|