1
|
Everts PA, Lana JF, Alexander RW, Dallo I, Kon E, Ambach MA, van Zundert A, Podesta L. Profound Properties of Protein-Rich, Platelet-Rich Plasma Matrices as Novel, Multi-Purpose Biological Platforms in Tissue Repair, Regeneration, and Wound Healing. Int J Mol Sci 2024; 25:7914. [PMID: 39063156 PMCID: PMC11277244 DOI: 10.3390/ijms25147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Autologous platelet-rich plasma (PRP) preparations are prepared at the point of care. Centrifugation cellular density separation sequesters a fresh unit of blood into three main fractions: a platelet-poor plasma (PPP) fraction, a stratum rich in platelets (platelet concentrate), and variable leukocyte bioformulation and erythrocyte fractions. The employment of autologous platelet concentrates facilitates the biological potential to accelerate and support numerous cellular activities that can lead to tissue repair, tissue regeneration, wound healing, and, ultimately, functional and structural repair. Normally, after PRP preparation, the PPP fraction is discarded. One of the less well-known but equally important features of PPP is that particular growth factors (GFs) are not abundantly present in PRP, as they reside outside of the platelet alpha granules. Precisely, insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) are mainly present in the PPP fraction. In addition to their roles as angiogenesis activators, these plasma-based GFs are also known to inhibit inflammation and fibrosis, and they promote keratinocyte migration and support tissue repair and wound healing. Additionally, PPP is known for the presence of exosomes and other macrovesicles, exerting cell-cell communication and cell signaling. Newly developed ultrafiltration technologies incorporate PPP processing methods by eliminating, in a fast and efficient manner, plasma water, cytokines, molecules, and plasma proteins with a molecular mass (weight) less than the pore size of the fibers. Consequently, a viable and viscous protein concentrate of functional total proteins, like fibrinogen, albumin, and alpha-2-macroglobulin is created. Consolidating a small volume of high platelet concentrate with a small volume of highly concentrated protein-rich PPP creates a protein-rich, platelet-rich plasma (PR-PRP) biological preparation. After the activation of proteins, mainly fibrinogen, the PR-PRP matrix retains and facilitates interactions between invading resident cells, like macrophages, fibroblast, and mesenchymal stem cells (MSCs), as well as the embedded concentrated PRP cells and molecules. The administered PR-PRP biologic will ultimately undergo fibrinolysis, leading to a sustained release of concentrated cells and molecules that have been retained in the PR-PRP matrix until the matrix is dissolved. We will discuss the unique biological and tissue reparative and regenerative properties of the PR-PRP matrix.
Collapse
Affiliation(s)
- Peter A. Everts
- Gulf Coast Biologics, A Non-Profit Organization, Fort Myers, FL 33916, USA
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - José Fábio Lana
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - Robert W. Alexander
- Regenevita Biocellular Aesthetic & Reconstructive Surgery, Cranio-Maxillofacial Surgery, Regenerative and Wound Healing, Hamilton, MT 59840, USA;
- Department of Surgery & Maxillofacial Surgery, School of Medicine & Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Ignacio Dallo
- Unit of Biological Therapies and MSK Interventionism, Department of Orthopaedic Surgery and Sports Medicine, Sport Me Medical Center, 41013 Seville, Spain;
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Mary A. Ambach
- BioEvolve, San Diego Orthobiologics and Sports Center, San Diego, CA 92024, USA
| | - André van Zundert
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, Brisbane and The University of Queensland, Brisbane 4072, Australia;
| | - Luga Podesta
- Bluetail Medical Group & Podesta Orthopedic Sports Medicine, Naples, FL 34109, USA;
- Physical Medicine & Rehabilitation Orlando College of Osteopathic Medicine, Orlando, FL 32806, USA
| |
Collapse
|
2
|
Manole CG, Soare C, Ceafalan LC, Voiculescu VM. Platelet-Rich Plasma in Dermatology: New Insights on the Cellular Mechanism of Skin Repair and Regeneration. Life (Basel) 2023; 14:40. [PMID: 38255655 PMCID: PMC10817627 DOI: 10.3390/life14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The skin's recognised functions may undergo physiological alterations due to ageing, manifesting as varying degrees of facial wrinkles, diminished tautness, density, and volume. Additionally, these functions can be disrupted (patho)physiologically through various physical and chemical injuries, including surgical trauma, accidents, or chronic conditions like ulcers associated with diabetes mellitus, venous insufficiency, or obesity. Advancements in therapeutic interventions that boost the skin's innate regenerative abilities could significantly enhance patient care protocols. The application of Platelet-Rich Plasma (PRP) is widely recognized for its aesthetic and functional benefits to the skin. Yet, the endorsement of PRP's advantages often borders on the dogmatic, with its efficacy commonly ascribed solely to the activation of fibroblasts by the factors contained within platelet granules. PRP therapy is a cornerstone of regenerative medicine which involves the autologous delivery of conditioned plasma enriched by platelets. This is achieved by centrifugation, removing erythrocytes while retaining platelets and their granules. Despite its widespread use, the precise sequences of cellular activation, the specific cellular players, and the molecular machinery that drive PRP-facilitated healing are still enigmatic. There is still a paucity of definitive and robust studies elucidating these mechanisms. In recent years, telocytes (TCs)-a unique dermal cell population-have shown promising potential for tissue regeneration in various organs, including the dermis. TCs' participation in neo-angiogenesis, akin to that attributed to PRP, and their role in tissue remodelling and repair processes within the interstitia of several organs (including the dermis), offer intriguing insights. Their potential to contribute to, or possibly orchestrate, the skin regeneration process following PRP treatment has elicited considerable interest. Therefore, pursuing a comprehensive understanding of the cellular and molecular mechanisms at work, particularly those involving TCs, their temporal involvement in structural recovery following injury, and the interconnected biological events in skin wound healing and regeneration represents a compelling field of study.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Liang C, Takahashi K, Furuya K, Ohkohchi N, Oda T. Dualistic role of platelets in living donor liver transplantation: Are they harmful? World J Gastroenterol 2022; 28:897-908. [PMID: 35317052 PMCID: PMC8908284 DOI: 10.3748/wjg.v28.i9.897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/04/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Platelets are anucleate fragments mainly involved in hemostasis and thrombosis, and there is emerging evidence that platelets have other nonhemostatic potentials in inflammation, angiogenesis, regeneration and ischemia/reperfusion injury (I/R injury), which are involved in the physiological and pathological processes during living donor liver transplantation (LDLT). LDLT is sometimes associated with impaired regeneration and severe I/R injury, leading to postoperative complications and decreased patient survival. Recent studies have suggested that perioperative thrombocytopenia is associated with poor graft regeneration and postoperative morbidity in the short and long term after LDLT. Although it is not fully understood whether thrombocytopenia is the cause or result, increasing platelet counts are frequently suggested to improve posttransplant outcomes in clinical studies. Based on rodent experiments, previous studies have identified that platelets stimulate liver regeneration after partial hepatectomy. However, the role of platelets in LDLT is controversial, as platelets are supposed to aggravate I/R injury in the liver. Recently, a rat model of partial liver transplantation (LT) was used to demonstrate that thrombopoietin-induced thrombocytosis prior to surgery accelerated graft regeneration and improved the survival rate after transplantation. It was clarified that platelet-derived liver regeneration outweighed the associated risk of I/R injury after partial LT. Clinical strategies to increase perioperative platelet counts, such as thrombopoietin, thrombopoietin receptor agonist and platelet transfusion, may improve graft regeneration and survival after LDLT.
Collapse
Affiliation(s)
- Chen Liang
- Gastrointestinal and Hepatobiliary-Pancreatic Surgery, University of Tsukuba, Tsukuba 3058575, Ibaraki, Japan
| | - Kazuhiro Takahashi
- Gastrointestinal and Hepatobiliary-Pancreatic Surgery, University of Tsukuba, Tsukuba 3058575, Ibaraki, Japan
| | - Kinji Furuya
- Gastrointestinal and Hepatobiliary-Pancreatic Surgery, University of Tsukuba, Tsukuba 3058575, Ibaraki, Japan
| | - Nobuhiro Ohkohchi
- Gastrointestinal and Hepatobiliary-Pancreatic Surgery, University of Tsukuba, Tsukuba 3058575, Ibaraki, Japan
| | - Tatsuya Oda
- Gastrointestinal and Hepatobiliary-Pancreatic Surgery, University of Tsukuba, Tsukuba 3058575, Ibaraki, Japan
| |
Collapse
|
4
|
Hearn JI, Green TN, Chopra M, Nursalim YNS, Ladvanszky L, Knowlton N, Blenkiron C, Poulsen RC, Singleton DC, Bohlander SK, Kalev-Zylinska ML. N-Methyl-D-Aspartate Receptor Hypofunction in Meg-01 Cells Reveals a Role for Intracellular Calcium Homeostasis in Balancing Megakaryocytic-Erythroid Differentiation. Thromb Haemost 2020; 120:671-686. [PMID: 32289863 PMCID: PMC7286128 DOI: 10.1055/s-0040-1708483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The release of calcium ions (Ca
2+
) from the endoplasmic reticulum (ER) and related store-operated calcium entry (SOCE) regulate maturation of normal megakaryocytes. The
N
-methyl-D-aspartate (NMDA) receptor (NMDAR) provides an additional mechanism for Ca
2+
influx in megakaryocytic cells, but its role remains unclear. We created a model of NMDAR hypofunction in Meg-01 cells using CRISPR-Cas9 mediated knockout of the
GRIN1
gene, which encodes an obligate, GluN1 subunit of the NMDAR. We found that compared with unmodified Meg-01 cells, Meg-01-
GRIN1−/−
cells underwent atypical differentiation biased toward erythropoiesis, associated with increased basal ER stress and cell death. Resting cytoplasmic Ca
2+
levels were higher in Meg-01-
GRIN1−/−
cells, but ER Ca
2+
release and SOCE were lower after activation. Lysosome-related organelles accumulated including immature dense granules that may have contributed an alternative source of intracellular Ca
2+
. Microarray analysis revealed that Meg-01-
GRIN1−/−
cells had deregulated expression of transcripts involved in Ca
2+
metabolism, together with a shift in the pattern of hematopoietic transcription factors toward erythropoiesis. In keeping with the observed pro-cell death phenotype induced by
GRIN1
deletion, memantine (NMDAR inhibitor) increased cytotoxic effects of cytarabine in unmodified Meg-01 cells. In conclusion, NMDARs comprise an integral component of the Ca
2+
regulatory network in Meg-01 cells that help balance ER stress and megakaryocytic-erythroid differentiation. We also provide the first evidence that megakaryocytic NMDARs regulate biogenesis of lysosome-related organelles, including dense granules. Our results argue that intracellular Ca
2+
homeostasis may be more important for normal megakaryocytic and erythroid differentiation than currently recognized; thus, modulation may offer therapeutic opportunities.
Collapse
Affiliation(s)
- James I Hearn
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Taryn N Green
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Martin Chopra
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Leandro Ladvanszky
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Nicholas Knowlton
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Raewyn C Poulsen
- Department of Medicine, School of Medicine, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Dean C Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Maggie L Kalev-Zylinska
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,LabPlus Haematology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
5
|
Takahashi K, Nagai S, Safwan M, Liang C, Ohkohchi N. Thrombocytopenia after liver transplantation: Should we care? World J Gastroenterol 2018; 24:1386-1397. [PMID: 29632420 PMCID: PMC5889819 DOI: 10.3748/wjg.v24.i13.1386] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/06/2018] [Accepted: 03/18/2018] [Indexed: 02/06/2023] Open
Abstract
Transient thrombocytopenia is a common phenomenon after liver transplantation. After liver transplantation (LT), platelet count decreases and reaches a nadir on postoperative days 3-5, with an average reduction in platelet counts of 60%; platelet count recovers to preoperative levels approximately two weeks after LT. The putative mechanisms include haemodilution, decreased platelet production, increased sequestration, medications, infections, thrombosis, or combination of these processes. However, the precise mechanisms remain unclear. The role of platelets in liver transplantation has been highlighted in recent years, and particular attention has been given to their effects beyond hemostasis and thrombosis. Previous studies have demonstrated that perioperative thrombocytopenia causes poor graft regeneration, increases the incidence of postoperative morbidity, and deteriorates the graft and decreases patient survival in both the short and long term after liver transplantation. Platelet therapies to increase perioperative platelet counts, such as thrombopoietin, thrombopoietin receptor agonist, platelet transfusion, splenectomy, and intravenous immunoglobulin treatment might have a potential for improving graft survival, however clinical trials are lacking. Further studies are warranted to detect direct evidence on whether thrombocytopenia is the cause or result of poor-graft function and postoperative complications, and to determine who needs platelet therapies in order to prevent postoperative complications and thus improve post-transplant outcomes.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, University of Tsukuba, Tsukuba, Ibaraki 3058575, Japan
| | - Shunji Nagai
- Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, ML 48202, United States
| | - Mohamed Safwan
- Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, ML 48202, United States
| | - Chen Liang
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, University of Tsukuba, Tsukuba, Ibaraki 3058575, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, University of Tsukuba, Tsukuba, Ibaraki 3058575, Japan
| |
Collapse
|
6
|
Kono H, Fujii H, Suzuki-Inoue K, Inoue O, Furuya S, Hirayama K, Akazawa Y, Nakata Y, Sun C, Tsukiji N, Shirai T, Ozaki Y. The platelet-activating receptor C-type lectin receptor-2 plays an essential role in liver regeneration after partial hepatectomy in mice. J Thromb Haemost 2017; 15:998-1008. [PMID: 28294559 DOI: 10.1111/jth.13672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 01/22/2023]
Abstract
Essentials Regeneration role of C-type lectin receptor-2 (CLEC-2) after 70% hepatectomy (HPx) was investigated. Wild-type or CLEC-2 deleted from platelets of chimeric mice (flKO) underwent HPx. The liver/body weight ratio was significantly lower in the flKO than in the wild-type. CLEC-2 plays an essential role in liver regeneration after HPx. SUMMARY Background and aim The aim of the present study was to investigate the role of C-type lectin receptor (CLEC)-2 in liver regeneration following partial liver resection in mice. Materials and methods Irradiated chimeric mice transplanted with fetal liver cells from wild-type (WT) mice, CLEC-2-deleted (KO) mice or mice with CLEC-2 deleted specifically from platelets (flKO) were generated. Mice underwent 70% partial hepatectomy (PH). Immunohistochemical staining was performed to investigate the expression of the endogenous ligand for CLEC-2, podoplanin. The accumulation of platelets in the liver was also quantified. The hepatic expression of the IL-6/gp130 and STAT3, Akt and ERK1/2 was also examined. Results The liver/body weight ratio and expression of all cell proliferation markers were significantly lower in the flKO group than in the WT group. The expression of phosphorylated (p) Akt and pERK1/2 was similar in the WT and flKO groups. On the other hand, the expression of pSTAT3 and IL-6 was significantly stronger in the WT group than in the flKO group. The expression of podoplanin was detected in the hepatic sinusoids of both groups. However, the extent to which platelets accumulated in hepatic sinusoids was significantly less in the flKO group than in the WT group. Conclusion CLEC-2 was involved in hepatic regeneration after liver resection and CLEC-2-related liver regeneration was attributed to the interaction between platelets and sinusoidal endothelial cells.
Collapse
Affiliation(s)
- H Kono
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - H Fujii
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - K Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - O Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - S Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - K Hirayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Y Akazawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Y Nakata
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - C Sun
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - N Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - T Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Y Ozaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
7
|
Murata S, Maruyama T, Nowatari T, Takahashi K, Ohkohchi N. Signal transduction of platelet-induced liver regeneration and decrease of liver fibrosis. Int J Mol Sci 2014; 15:5412-25. [PMID: 24686514 PMCID: PMC4013572 DOI: 10.3390/ijms15045412] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/16/2014] [Accepted: 03/20/2014] [Indexed: 12/16/2022] Open
Abstract
Platelets contain three types of granules: alpha granules, dense granules, and lysosomal granules. Each granule contains various growth factors, cytokines, and other physiological substances. Platelets trigger many kinds of biological responses, such as hemostasis, wound healing, and tissue regeneration. This review presents experimental evidence of platelets in accelerating liver regeneration and improving liver fibrosis. The regenerative effect of liver by platelets consists of three mechanisms; i.e., the direct effect on hepatocytes, the cooperative effect with liver sinusoidal endothelial cells, and the collaborative effect with Kupffer cells. Many signal transduction pathways are involved in hepatocyte proliferation. One is activation of Akt and extracellular signal-regulated kinase (ERK)1/2, which are derived from direct stimulation from growth factors in platelets. The other is signal transducer and activator of transcription-3 (STAT3) activation by interleukin (IL)-6 derived from liver sinusoidal endothelial cells and Kupffer cells, which are stimulated by contact with platelets during liver regeneration. Platelets also improve liver fibrosis in rodent models by inactivating hepatic stellate cells to decrease collagen production. The level of intracellular cyclic adenosine monophosphate (cyclic AMP) is increased by adenosine through its receptors on hepatic stellate cells, resulting in inactivation of these cells. Adenosine is produced by the degradation of adenine nucleotides such as adenosine diphosphate (ADP) and adenosine tri-phosphate (ATP), which are stored in abundance within the dense granules of platelets.
Collapse
Affiliation(s)
- Soichiro Murata
- Department of Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takehito Maruyama
- Department of Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takeshi Nowatari
- Department of Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Kazuhiro Takahashi
- Department of Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Nobuhiro Ohkohchi
- Department of Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
8
|
Di Michele M, Goubau C, Waelkens E, Thys C, De Vos R, Overbergh L, Schyns T, Buyse G, Casaer P, Van Geet C, Freson K. Functional studies and proteomics in platelets and fibroblasts reveal a lysosomal defect with increased cathepsin-dependent apoptosis in ATP1A3 defective alternating hemiplegia of childhood. J Proteomics 2013; 86:53-69. [DOI: 10.1016/j.jprot.2013.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 01/07/2023]
|
9
|
Abstract
Platelets are the smallest blood constitutes which contain three types of granules; alpha granules, dense granules, and lysosomal granules. Each granule contains various biophysiological substances such as growth factors, cytokines, etc. Platelets have been conventionally viewed as a trigger of inflammatory responses and injury in the liver. Some studies revealed that platelets have strong effects on promoting liver regeneration. This review presents experimental evidence of platelets in accelerating liver regeneration and describes three different mechanisms involved; (1) the direct effect on hepatocytes, where platelets translocate to the space of Disse and release growth factors through direct contact with hepatocytes, (2) the cooperative effect with liver sinusoidal endothelial cells, where the dense concentration of sphingosine-1-phosphate in platelets induces excretion of interleukin-6 from liver sinusoidal endothelial cells, and (3) the collaborative effect with Kupffer cells, where the functions of Kupffer cells are enhanced by platelets.
Collapse
|
10
|
Louwette S, Régal L, Wittevrongel C, Thys C, Vandeweeghde G, Decuyper E, Leemans P, De Vos R, Van Geet C, Jaeken J, Freson K. NPC1 defect results in abnormal platelet formation and function: studies in Niemann-Pick disease type C1 patients and zebrafish. Hum Mol Genet 2012; 22:61-73. [PMID: 23010472 DOI: 10.1093/hmg/dds401] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick type C is a lysosomal storage disease associated with mutations in NPC1 or NPC2, resulting in an accumulation of cholesterol in the endosomal-lysosomal system. Niemann-Pick type C has a clinical spectrum that ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease combined with remarkably, in some cases, hematological defects such as thrombocytopenia, anemia and petechial rash. A role of NPC1 in hematopoiesis was never shown. Here, we describe platelet function abnormalities in three unrelated patients with a proven genetic and biochemical NPC1 defect. Their platelets have reduced aggregations, P-selectin expression and ATP secretions that are compatible with the observed abnormal alpha and reduced dense granules as studied by electron microscopy and CD63 staining after platelet spreading. Their blood counts were normal. NPC1 expression was shown in platelets and megakaryocytes (MKs). In vitro differentiated MKs from NPC1 patients exhibit hyperproliferation of immature MKs with different CD63(+) granules and abnormal cellular accumulation of cholesterol as shown by filipin stainings. The role of NPC1 in megakaryopoiesis was further studied using zebrafish with GFP-labeled thrombocytes or DsRed-labeled erythrocytes. NPC1 depletion in zebrafish resulted in increased cell death in the brain and abnormal cellular accumulation of filipin. NPC1-depleted embryos presented with thrombocytopenia and mild anemia as studied by flow cytometry and real-time QPCR for specific blood cell markers. In conclusion, this is the first report, showing a role of NPC1 in platelet function and formation but further studies are needed to define how cholesterol storage interferes with these processes.
Collapse
Affiliation(s)
- Sophie Louwette
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bunbury A, Potolicchio I, Maitra R, Santambrogio L. Functional analysis of monocyte MHC class II compartments. FASEB J 2008; 23:164-71. [PMID: 18815360 DOI: 10.1096/fj.08-109439] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circulating monocytes, as dendritic cell and macrophage precursors, exhibit several functions usually associated with antigen-presenting cells, such as phagocytosis and presence of endosomal/lysosomal degradative compartments particularly enriched in Lamp-1, MHC class II molecules, and other proteins related to antigen processing and MHC class II loading [MHC class II compartments (MIICs)]. Ultrastructural analysis of these organelles indicates that, differently from the multivesicular bodies present in dendritic cells, in monocytes the MIICs are characterized by a single perimetral membrane surrounding an electron-dense core. Analysis of their content reveals enrichment in myeloperoxidase, an enzyme classically associated with azurophilic granules in granulocytes and mast cell secretory lysosomes. Elevation in intracellular free calcium levels in monocytes induced secretion of beta-hexosaminidase, cathepsins, and myeloperoxidase in the extracellular milieu; surface up-regulation of MHC class II molecules; and appearance of lysosomal resident proteins. The Ca(2+)-regulated surface transport mechanism of MHC class II molecules observed in monocytes is different from the tubulovesicular organization of the multivesicular bodies previously reported in dendritic cells and macrophages. Hence, in monocytes, MHC class II-enriched organelles combine degradative functions typical of lysosomes and regulated secretion typical of secretory lysosomes. More important, Ca(2+)-mediated up-regulation of surface MHC class II molecules is accompanied by extracellular release of lysosomal resident enzymes.
Collapse
Affiliation(s)
- Allyson Bunbury
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|