1
|
Dovrolis N, Valatas V, Drygiannakis I, Filidou E, Spathakis M, Kandilogiannakis L, Tarapatzi G, Arvanitidis K, Bamias G, Vradelis S, Manolopoulos VG, Paspaliaris V, Kolios G. Landscape of Interactions between Stromal and Myeloid Cells in Ileal Crohn's Disease; Indications of an Important Role for Fibroblast-Derived CCL-2. Biomedicines 2024; 12:1674. [PMID: 39200138 PMCID: PMC11351973 DOI: 10.3390/biomedicines12081674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND AND AIMS Monocyte recruitment in the lamina propria and inflammatory phenotype driven by the mucosal microenvironment is critical for the pathogenesis of inflammatory bowel disease. However, the stimuli responsible remain largely unknown. Recent works have focused on stromal cells, the main steady-state cellular component in tissue, as they produce pro-inflammatory chemokines that contribute to the treatment-resistant nature of IBD. METHODS We studied the regulation of these processes by examining the communication patterns between stromal and myeloid cells in ileal Crohn's disease (CD) using a complete single-cell whole tissue sequencing analysis pipeline and in vitro experimentation in mesenchymal cells. RESULTS We report expansion of S4 stromal cells and monocyte-like inflammatory macrophages in the inflamed mucosa and describe interactions that may establish sustained local inflammation. These include expression of CCL2 by S1 fibroblasts to recruit and retain monocytes and macrophages in the mucosa, where they receive signals for proliferation, survival, and differentiation to inflammatory macrophages from S4 stromal cells through molecules such as MIF, IFNγ, and FN1. The overexpression of CCL2 in ileal CD and its stromal origin was further demonstrated in vitro by cultured mesenchymal cells and intestinal organoids in the context of an inflammatory milieu. CONCLUSIONS Our findings outline an extensive cross-talk between stromal and myeloid cells, which may contribute to the onset and progression of inflammation in ileal Crohn's disease. Understanding the mechanisms underlying monocyte recruitment and polarization, as well as the role of stromal cells in sustaining inflammation, can provide new avenues for developing targeted therapies to treat IBD.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Eirini Filidou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Michail Spathakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Giorgos Bamias
- GI Unit, 3 Department of Internal Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stergios Vradelis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | | | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| |
Collapse
|
2
|
Deng R, Wu K, Lin J, Wang D, Huang Y, Li Y, Shi Z, Zhang Z, Wang Z, Mao Z, Liao X, Ma H. DeepSub: Utilizing Deep Learning for Predicting the Number of Subunits in Homo-Oligomeric Protein Complexes. Int J Mol Sci 2024; 25:4803. [PMID: 38732022 PMCID: PMC11084820 DOI: 10.3390/ijms25094803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The molecular weight (MW) of an enzyme is a critical parameter in enzyme-constrained models (ecModels). It is determined by two factors: the presence of subunits and the abundance of each subunit. Although the number of subunits (NS) can potentially be obtained from UniProt, this information is not readily available for most proteins. In this study, we addressed this gap by extracting and curating subunit information from the UniProt database to establish a robust benchmark dataset. Subsequently, we propose a novel model named DeepSub, which leverages the protein language model and Bi-directional Gated Recurrent Unit (GRU), to predict NS in homo-oligomers solely based on protein sequences. DeepSub demonstrates remarkable accuracy, achieving an accuracy rate as high as 0.967, surpassing the performance of QUEEN. To validate the effectiveness of DeepSub, we performed predictions for protein homo-oligomers that have been reported in the literature but are not documented in the UniProt database. Examples include homoserine dehydrogenase from Corynebacterium glutamicum, Matrilin-4 from Mus musculus and Homo sapiens, and the Multimerins protein family from M. musculus and H. sapiens. The predicted results align closely with the reported findings in the literature, underscoring the reliability and utility of DeepSub.
Collapse
Affiliation(s)
- Rui Deng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ke Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiawei Lin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dehang Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuanyuan Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yang Li
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenkun Shi
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zihan Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhitao Mao
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaoping Liao
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
3
|
Houlahan CB, Kong Y, Johnston B, Cielesh M, Chau TH, Fenwick J, Coleman PR, Hao H, Haltiwanger RS, Thaysen-Andersen M, Passam FH, Larance M. Analysis of the Healthy Platelet Proteome Identifies a New Form of Domain-Specific O-Fucosylation. Mol Cell Proteomics 2024; 23:100717. [PMID: 38237698 PMCID: PMC10879016 DOI: 10.1016/j.mcpro.2024.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Platelet activation induces the secretion of proteins that promote platelet aggregation and inflammation. However, detailed analysis of the released platelet proteome is hampered by platelets' tendency to preactivate during their isolation and a lack of sensitive protocols for low abundance releasate analysis. Here, we detail the most sensitive analysis to date of the platelet releasate proteome with the detection of >1300 proteins. Unbiased scanning for posttranslational modifications within releasate proteins highlighted O-glycosylation as being a major component. For the first time, we detected O-fucosylation on previously uncharacterized sites including multimerin-1 (MMRN1), a major alpha granule protein that supports platelet adhesion to collagen and is a carrier for platelet factor V. The N-terminal elastin microfibril interface (EMI) domain of MMRN1, a key site for protein-protein interaction, was O-fucosylated at a conserved threonine within a new domain context. Our data suggest that either protein O-fucosyltransferase 1, or a novel protein O-fucosyltransferase, may be responsible for this modification. Mutating this O-fucose site on the EMI domain led to a >50% reduction of MMRN1 secretion, supporting a key role of EMI O-fucosylation in MMRN1 secretion. By comparing releasates from resting and thrombin-treated platelets, 202 proteins were found to be significantly released after high-dose thrombin stimulation. Complementary quantification of the platelet lysates identified >3800 proteins, which confirmed the platelet origin of releasate proteins by anticorrelation analysis. Low-dose thrombin treatment yielded a smaller subset of significantly regulated proteins with fewer secretory pathway enzymes. The extensive platelet proteome resource provided here (larancelab.com/platelet-proteome) allows identification of novel regulatory mechanisms for drug targeting to address platelet dysfunction and thrombosis.
Collapse
Affiliation(s)
- Callum B Houlahan
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Yvonne Kong
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Bede Johnston
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Michelle Cielesh
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - The Huong Chau
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Jemma Fenwick
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Coleman
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Huilin Hao
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia; Institute for Glyco-Core Research, Nagoya University, Nagoya, Aichi, Japan
| | - Freda H Passam
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia.
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
4
|
Bourguignon A, Tasneem S, Hayward CPM. Update on platelet procoagulant mechanisms in health and in bleeding disorders. Int J Lab Hematol 2022; 44 Suppl 1:89-100. [PMID: 36074709 DOI: 10.1111/ijlh.13866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
Platelet procoagulant mechanisms are emerging to be complex and important to achieving haemostasis. The mechanisms include the release of procoagulant molecules from platelet storage granules, and strong agonist-induced expression of procoagulant phospholipids on the outer platelet membrane for tenase and prothrombinase assembly. The release of dense granule polyphosphate is important to platelet procoagulant function as it promotes the activation of factors XII, XI and V, inhibits tissue factor pathway inhibitor and fibrinolysis, and strengthens fibrin clots. Platelet procoagulant function also involves the release of partially activated factor V from platelets. Scott syndrome has provided important insights on the mechanisms that regulate procoagulant phospholipids expression on the external platelet membrane, which require strong agonist stimulation that increase cystolic calcium levels, mitochondrial calcium uptake, the loss of flippase function and activation of the transmembrane scramblase protein anoctamin 6. There have been advances in the methods used to directly and indirectly assess platelet procoagulant function in health and disease. Assessments of thrombin generation with platelet rich plasma samples has provided new insights on how platelet procoagulant function is altered in inherited platelet disorders, and how platelets influence the bleeding phenotype of a number of severe coagulation factor deficiencies. Several therapies, including desmopressin and recombinant factor VIIa, improve thrombin generation by platelets. There is growing interest in targeting platelet procoagulant function for therapeutic benefit. This review highlights recent advances in our understanding of platelet-dependent procoagulant mechanisms in health and in bleeding disorders.
Collapse
Affiliation(s)
- Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Catherine P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
5
|
Deletion in chromosome 6 spanning alpha-synuclein and multimerin1 loci in the Rab27a/b double knockout mouse. Sci Rep 2022; 12:9837. [PMID: 35701443 PMCID: PMC9197848 DOI: 10.1038/s41598-022-13557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
We report an incidental 358.5 kb deletion spanning the region encoding for alpha-synuclein (αsyn) and multimerin1 (Mmrn1) in the Rab27a/Rab27b double knockout (DKO) mouse line previously developed by Tolmachova and colleagues in 2007. Western blot and RT-PCR studies revealed lack of αsyn expression at either the mRNA or protein level in Rab27a/b DKO mice. PCR of genomic DNA from Rab27a/b DKO mice demonstrated at least partial deletion of the Snca locus using primers targeted to exon 4 and exon 6. Most genes located in proximity to the Snca locus, including Atoh1, Atoh2, Gm5570, Gm4410, Gm43894, and Grid2, were shown not to be deleted by PCR except for Mmrn1. Using whole genomic sequencing, the complete deletion was mapped to chromosome 6 (60,678,870–61,037,354), a slightly smaller deletion region than that previously reported in the C57BL/6J substrain maintained by Envigo. Electron microscopy of cortex from these mice demonstrates abnormally enlarged synaptic terminals with reduced synaptic vesicle density, suggesting potential interplay between Rab27 isoforms and αsyn, which are all highly expressed at the synaptic terminal. Given this deletion involving several genes, the Rab27a/b DKO mouse line should be used with caution or with appropriate back-crossing to other C57BL/6J mouse substrain lines without this deletion.
Collapse
|
6
|
Multimerin-1 and cancer: a review. Biosci Rep 2022; 42:230760. [PMID: 35132992 PMCID: PMC8881648 DOI: 10.1042/bsr20211248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Multimerin-1 (MMRN1) is a platelet protein with a role in haemostasis and coagulation. It is also present in endothelial cells (ECs) and the extracellular matrix (ECM), where it may be involved in cell adhesion, but its molecular functions and protein–protein interactions in these cellular locations have not been studied in detail yet. In recent years, MMRN1 has been identified as a differentially expressed gene (DEG) in various cancers and it has been proposed as a possible cancer biomarker. Some evidence suggest that MMRN1 expression is regulated by methylation, protein interactions, and non-coding RNAs (ncRNAs) in different cancers. This raises the questions if a functional role of MMRN1 is being targeted during cancer development, and if MMRN1’s differential expression pattern correlates with cancer progression. As a result, it is timely to review the current state of what is known about MMRN1 to help inform future research into MMRN1’s molecular mechanisms in cancer.
Collapse
|
7
|
Konwerski M, Gromadka A, Arendarczyk A, Koblowska M, Iwanicka-Nowicka R, Wilimski R, Czub P, Filipiak KJ, Hendzel P, Zielenkiewicz P, Opolski G, Gąsecka A, Mazurek T. Atherosclerosis Pathways are Activated in Pericoronary Adipose Tissue of Patients with Coronary Artery Disease. J Inflamm Res 2021; 14:5419-5431. [PMID: 34707383 PMCID: PMC8542577 DOI: 10.2147/jir.s326769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Perivascular release of inflammatory mediators may accelerate coronary lesion formation and contribute to plaque instability. Accordingly, we compared gene expression in pericoronary adipose tissue (PCAT) in patients with advanced coronary artery disease (CAD) and non-CAD controls. PATIENTS AND METHODS PCAT samples were collected during coronary bypass grafting from CAD patients (n = 21) and controls undergoing valve replacement surgery, with CAD excluded by coronary angiography (n = 19). Gene expression was measured by GeneChip™ Human Transcriptome Array 2.0. Obtained list of 1348 transcripts (2.0%) that passed the filter criteria was further analyzed by Ingenuity Pathway Analysis software, identifying 735 unique differentially expressed genes (DEGs). RESULTS Among the CAD patients, 416 (30.9%) transcripts were upregulated, and 932 (69.1%) were downregulated, compared to controls. The top upregulated genes were involved in inflammation and atherosclerosis (chemokines, interleukin-6, selectin E and low-density lipoprotein cholesterol (LDL-C) receptor), whereas the downregulated genes were involved in cardiac ischaemia and remodelling, platelet function and mitochondrial function (miR-3671, miR-4524a, multimerin, biglycan, tissue factor pathway inhibitor (TFPI), glucuronidases, miR-548, collagen type I, III, IV). Among the top upstream regulators, we identified molecules that have proinflammatory and atherosclerotic features (High Mobility Group Box 2 (HMGB2), platelet-derived growth platelet (PDGF) and evolutionarily conserved signaling intermediate in Toll pathways (ESCIT)). The activated pathway related to DEGs consisted of molecules with well-established role in the pathogenesis of atherosclerosis (TFPI, plasminogen activator, plasminogen activator, urokinase receptor (PLAUR), thrombomodulin). Moreover, we showed that 22 of the altered genes form a pro-atherogenic network. CONCLUSION Altered gene expression in PCAT of CAD patients, with genes upregulation and activation of pathway involved in inflammation and atherosclerosis, may be involved in CAD development and progression.
Collapse
Affiliation(s)
- Michał Konwerski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Gromadka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Arendarczyk
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marta Koblowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Radosław Wilimski
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Czub
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Hendzel
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Opolski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Chaprov KD, Goloborshcheva VV, Tarasova TV, Teterina EV, Korokin MV, Soldatov VO, Pokrovskiy MV, Kucheryanu VG, Morozov SG, Ovchinnikov RK. Increased Expression of the Multimerin-1 Gene in α-Synuclein Knokout Mice. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2020; 494:260-263. [PMID: 33083886 DOI: 10.1134/s0012496620050014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Multimerin-1 (Mmrn-1) is a soluble protein, also known as elastin microfibril interfacer 4 (EMILIN-4), found in platelets and in the endothelium of blood vessels. Its function and role in pathology are still not fully understood. Genetic modifications in alpha-synuclein gene (Snca) locus that mapped 160 Kb apart from Mmrn-1 in mouse genome, could weigh with regulatory elements of Mmrn-1 gene. We have studied the Mmrn-1 expression in brain cortex of three mouse lines with Snca knock-out: B6(Cg)-Sncatm1.2Vlb/J, B6;129-Sncatm1Sud/J, and B6;129X1-Sncatm1Rosl/J. The 35-fold increase for Mmrn-1 mRNA level have been found in B6;129X1-Sncatm1Rosl/J mice that carry in their genome foreign sequences including bacterial gene neo and a strong promoter of a mouse phosphoglycerate kinase (Pgk1) oriented towards Mmrn-1 gene. This effect on regulatory elements of Mmrn-1 gene as a result of modifications in Snca locus should be taken into consideration when using B6;129X1-Sncatm1Rosl/J line, that is widely applied for study of neurodegeneration mechanisms.
Collapse
Affiliation(s)
- K D Chaprov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia. .,School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom.
| | - V V Goloborshcheva
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom.,Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - T V Tarasova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia.,School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - E V Teterina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
| | - M V Korokin
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, 308007, Belgorod, Russia
| | - V O Soldatov
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, 308007, Belgorod, Russia
| | - M V Pokrovskiy
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, 308007, Belgorod, Russia
| | - V G Kucheryanu
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - S G Morozov
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - R K Ovchinnikov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
| |
Collapse
|
9
|
The Actin Binding Protein Plastin-3 Is Involved in the Pathogenesis of Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11111663. [PMID: 31717802 PMCID: PMC6895973 DOI: 10.3390/cancers11111663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Leukemia-initiating cells reside within the bone marrow in specialized niches where they undergo complex interactions with their surrounding stromal cells. We have identified the actin-binding protein Plastin-3 (PLS3) as potential player within the leukemic bone marrow niche and investigated its functional role in acute myeloid leukemia. High expression of PLS3 was associated with a poor overall and event-free survival for AML patients. These findings were supported by functional in vitro and in vivo experiments. AML cells with a PLS3 knockdown showed significantly reduced colony numbers in vitro while the PLS3 overexpression variants resulted in significantly enhanced colony numbers compared to their respective controls. Furthermore, the survival of NSG mice transplanted with the PLS3 knockdown cells showed a significantly prolonged survival in comparison to mice transplanted with the control AML cells. Further studies should focus on the underlying leukemia-promoting mechanisms and investigate PLS3 as therapeutic target.
Collapse
|
10
|
Nukala SB, Regazzoni L, Aldini G, Zodda E, Tura-Ceide O, Mills NL, Cascante M, Carini M, D'Amato A. Differentially Expressed Proteins in Primary Endothelial Cells Derived From Patients With Acute Myocardial Infarction. Hypertension 2019; 74:947-956. [PMID: 31446798 DOI: 10.1161/hypertensionaha.119.13472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endothelial dysfunction is one of the primary factors in the onset and progression of atherothrombosis resulting in acute myocardial infarction (AMI). However, the pathological and cellular mechanisms of endothelial dysfunction in AMI have not been systematically studied. Protein expression profiling in combination with a protein network analysis was used by the mass spectrometry-based label-free quantification approach. This identified and quantified 2246 proteins, of which 335 were differentially regulated in coronary arterial endothelial cells from patients with AMI compared with controls. The differentially regulated protein profiles reveal the alteration of (1) metabolism of RNA, (2) platelet activation, signaling, and aggregation, (3) neutrophil degranulation, (4) metabolism of amino acids and derivatives, (5) cellular responses to stress, and (6) response to elevated platelet cytosolic Ca2+ pathways. Increased production of oxidants and decreased production of antioxidant biomarkers as well as downregulation of proteins with antioxidant properties suggests a role for oxidative stress in mediating endothelial dysfunction during AMI. In conclusion, this is the first quantitative proteomics study to evaluate the cellular mechanisms of endothelial dysfunction in patients with AMI. A better understanding of the endothelial proteome and pathophysiology of AMI may lead to the identification of new drug targets.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.).,Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Spain (S.B.N., E.Z., M. Cascante)
| | - Luca Regazzoni
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| | - Giancarlo Aldini
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| | - Erika Zodda
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Spain (S.B.N., E.Z., M. Cascante)
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Spain (O.T.-C.).,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain (O.T.-C.)
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (N.L.M.).,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, UK (N.L.M.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Spain (S.B.N., E.Z., M. Cascante).,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) and metabolomics node at INB-Bioinfarmatics Platform, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (M. Cascante)
| | - Marina Carini
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| | - Alfonsina D'Amato
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| |
Collapse
|
11
|
Ma B, Chen J, Mu Y, Xue B, Zhao A, Wang D, Chang D, Pan Y, Liu J. Proteomic analysis of rat serum revealed the effects of chronic sleep deprivation on metabolic, cardiovascular and nervous system. PLoS One 2018; 13:e0199237. [PMID: 30235220 PMCID: PMC6147403 DOI: 10.1371/journal.pone.0199237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Sleep is an essential and fundamental physiological process that plays crucial roles in the balance of psychological and physical health. Sleep disorder may lead to adverse health outcomes. The effects of sleep deprivation were extensively studied, but its mechanism is still not fully understood. The present study aimed to identify the alterations of serum proteins associated with chronic sleep deprivation, and to seek for potential biomarkers of sleep disorder mediated diseases. A label-free quantitative proteomics technology was used to survey the global changes of serum proteins between normal rats and chronic sleep deprivation rats. A total of 309 proteins were detected in the serum samples and among them, 117 proteins showed more than 1.8-folds abundance alterations between the two groups. Functional enrichment and network analyses of the differential proteins revealed a close relationship between chronic sleep deprivation and several biological processes including energy metabolism, cardiovascular function and nervous function. And four proteins including pyruvate kinase M1, clusterin, kininogen1 and profilin-1were identified as potential biomarkers for chronic sleep deprivation. The four candidates were validated via parallel reaction monitoring (PRM) based targeted proteomics. In addition, protein expression alteration of the four proteins was confirmed in myocardium and brain of rat model. In summary, the comprehensive proteomic study revealed the biological impacts of chronic sleep deprivation and discovered several potential biomarkers. This study provides further insight into the pathological and molecular mechanisms underlying sleep disorders at protein level.
Collapse
Affiliation(s)
- Bo Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jincheng Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongying Mu
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Bingjie Xue
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aimei Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daoping Wang
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
| | - Yinghong Pan
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Science, Beijing, China
- * E-mail: (JL); (YP)
| | - Jianxun Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
- * E-mail: (JL); (YP)
| |
Collapse
|
12
|
Liron T, Raphael B, Hiram‐Bab S, Bab IA, Gabet Y. Bone loss in C57BL/6J‐OlaHsd mice, a substrain of C57BL/6J carrying mutated alpha‐synuclein and multimerin‐1 genes. J Cell Physiol 2017; 233:371-377. [DOI: 10.1002/jcp.25895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Tamar Liron
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Bitya Raphael
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Sahar Hiram‐Bab
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Itai A. Bab
- Bone LaboratoryThe Hebrew University of JerusalemJerusalemIsrael
| | - Yankel Gabet
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
13
|
Randell A, Daneshtalab N. Elastin microfibril interface-located protein 1, transforming growth factor beta, and implications on cardiovascular complications. ACTA ACUST UNITED AC 2017; 11:437-448. [PMID: 28545768 DOI: 10.1016/j.jash.2017.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/07/2017] [Accepted: 04/20/2017] [Indexed: 01/12/2023]
Abstract
Elastin microfibril interface-located protein 1 (EMILIN1), a glycoprotein, is associated with elastin in the extracellular matrix (ECM) of arteries, lymph vasculature, and other tissues. EMILIN1 particularly has a niche role in elastin fiber biogenesis (elastogenesis) by aiding with the fusion of elastin fibers, rendering them more ordered. In addition to elastogenesis, EMILIN1 has been shown to have roles in maintenance of vascular cell morphology, smooth muscle cell adhesion to elastic fibers, and transforming growth factor (TGFβ) regulation, by inhibiting TGFβ activation via blocking the proteolytic production of the latency-associated peptide/active TGFβ complex. The increased TGFβ signaling induced during EMILIN1 deficiency alters TGFβ activity, resulting in vascular smooth muscle cell growth and vascular remodeling. The increasing systemic blood pressure associated with TGFβ signaling may be closely linked to the activity of other mediators that affect cardiovascular homeostasis, such as angiotensin II. The increase in prevalence of hypertension and other cardiovascular diseases in other disease states likely involve a complex activation of TGFβ signaling and ECM dysfunction. Thus, the interaction of TGFβ and ECM components appears to be integrative involving both structural alterations to vessels through EMILIN1 and changes in TGFβ signaling processes. This review summarizes the current knowledge on the EMILIN1-TGFβ relationship; the specific roles of EMILIN1 and TGFβ in blood pressure regulation, their synergistic interaction, and in particular the role of TGFβ (in conjunction with ECM proteins) in other disease states altering cardiovascular homeostasis.
Collapse
Affiliation(s)
- Amy Randell
- Health Sciences Center, School of Pharmacy, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Noriko Daneshtalab
- Health Sciences Center, School of Pharmacy, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|
14
|
Extracellular Matrix, a Hard Player in Angiogenesis. Int J Mol Sci 2016; 17:ijms17111822. [PMID: 27809279 PMCID: PMC5133823 DOI: 10.3390/ijms17111822] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins, glycoproteins, proteoglycans, and polysaccharides. Through multiple interactions with each other and the cell surface receptors, not only the ECM determines the physical and mechanical properties of the tissues, but also profoundly influences cell behavior and many physiological and pathological processes. One of the functions that have been extensively explored is its impingement on angiogenesis. The strong impact of the ECM in this context is both direct and indirect by virtue of its ability to interact and/or store several growth factors and cytokines. The aim of this review is to provide some examples of the complex molecular mechanisms that are elicited by these molecules in promoting or weakening the angiogenic processes. The scenario is intricate, since matrix remodeling often generates fragments displaying opposite effects compared to those exerted by the whole molecules. Thus, the balance will tilt towards angiogenesis or angiostasis depending on the relative expression of pro- or anti-angiogenetic molecules/fragments composing the matrix of a given tissue. One of the vital aspects of this field of research is that, for its endogenous nature, the ECM can be viewed as a reservoir to draw from for the development of new more efficacious therapies to treat angiogenesis-dependent pathologies.
Collapse
|
15
|
Parker DN, Tasneem S, Farndale RW, Bihan D, Sadler JE, Sebastian S, de Groot PG, Hayward CPM. The functions of the A1A2A3 domains in von Willebrand factor include multimerin 1 binding. Thromb Haemost 2016; 116:87-95. [PMID: 27052467 PMCID: PMC5175582 DOI: 10.1160/th15-09-0700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/18/2016] [Indexed: 12/24/2022]
Abstract
Multimerin 1 (MMRN1) is a massive, homopolymeric protein that is stored in platelets and endothelial cells for activation-induced release. In vitro, MMRN1 binds to the outer surfaces of activated platelets and endothelial cells, the extracellular matrix (including collagen) and von Willebrand factor (VWF) to support platelet adhesive functions. VWF associates with MMRN1 at high shear, not static conditions, suggesting that shear exposes cryptic sites within VWF that support MMRN1 binding. Modified ELISA and surface plasmon resonance were used to study the structural features of VWF that support MMRN1 binding, and determine the affinities for VWF-MMRN1 binding. High shear microfluidic platelet adhesion assays determined the functional consequences for VWF-MMRN1 binding. VWF binding to MMRN1 was enhanced by shear exposure and ristocetin, and required VWF A1A2A3 region, specifically the A1 and A3 domains. VWF A1A2A3 bound to MMRN1 with a physiologically relevant binding affinity (KD: 2.0 ± 0.4 nM), whereas the individual VWF A1 (KD: 39.3 ± 7.7 nM) and A3 domains (KD: 229 ± 114 nM) bound to MMRN1 with lower affinities. VWF A1A2A3 was also sufficient to support the adhesion of resting platelets to MMRN1 at high shear, by a mechanism dependent on VWF-GPIbα binding. Our study provides new information on the molecular basis of MMRN1 binding to VWF, and its role in supporting platelet adhesion at high shear. We propose that at sites of vessel injury, MMRN1 that is released following activation of platelets and endothelial cells, binds to VWF A1A2A3 region to support platelet adhesion at arterial shear rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Catherine P M Hayward
- Catherine P. M. Hayward, McMaster University Medical Centre, HSC 2N29A, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5, Tel.: +1 905 521 2100 Ext. 76274, Fax: +1 905 521 2338, E-mail:
| |
Collapse
|
16
|
Laszlo GS, Alonzo TA, Gudgeon CJ, Harrington KH, Gerbing RB, Wang YC, Ries RE, Raimondi SC, Hirsch BA, Gamis AS, Meshinchi S, Walter RB. Multimerin-1 (MMRN1) as Novel Adverse Marker in Pediatric Acute Myeloid Leukemia: A Report from the Children's Oncology Group. Clin Cancer Res 2015; 21:3187-95. [PMID: 25825478 DOI: 10.1158/1078-0432.ccr-14-2684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/18/2015] [Indexed: 01/24/2023]
Abstract
PURPOSE Exploratory gene expression array analyses suggested multimerin-1 (MMRN1) to be a predictive biomarker in acute myelogenous leukemia (AML). Following up on these studies, we evaluated the role of MMRN1 expression as outcome predictor in two recent Children's Oncology Group trials. EXPERIMENTAL DESIGN We retrospectively quantified MMRN1 expression in 183 participants of AAML03P1 and 750 participants of AAML0531 by reverse-transcriptase PCR and correlated expression levels with disease characteristics and clinical outcome. RESULTS In AAML03P1, the highest quartile of MMRN1 expression (expression ≥0.5 relative to β-glucuronidase; n = 45) was associated with inferior event-free survival (EFS; P < 0.002) and higher relapse risk (P < 0.004). In AAML0531, in which we quantified MMRN1 mRNA for validation, patients with relative MMRN1 expression ≥0.5 (n = 160) less likely achieved remission (67% vs. 77%, P = 0.006), and more frequently had minimal residual disease (43% vs. 24%, P = 0.001) after one induction course. They had inferior overall survival (OS; 44% ± 9% vs. 69% ± 4% at 5 years; P < 0.001) and EFS (32% ± 8% vs. 54% ± 4% at 5 years; P < 0.001) and higher relapse risk (57% ± 10% vs. 35% ± 5% at 5 years; P < 0.001). These differences were partly attributable to the fact that patients with high MMRN1 expression less likely had cytogenetic/molecular low-risk disease (P < 0.001) than those with low MMRN1 expression. Nevertheless, after multivariable adjustment, high MMRN1 expression remained statistically significantly associated with shorter OS (HR, 1.57; 95% confidence interval, 1.17-2.12; P = 0.003) and EFS (HR, 1.34; 1.04-1.73; P = 0.025), and higher relapse risk (HR, 1.40; 1.01-1.94; P = 0.044). CONCLUSIONS Together, our studies identify MMRN1 expression as a novel biomarker that may refine AML risk stratification.
Collapse
Affiliation(s)
- George S Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Todd A Alonzo
- Department of Biostatistics, University of Southern California, Los Angeles, California. Children's Oncology Group, Monrovia, California
| | - Chelsea J Gudgeon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kimberly H Harrington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Susana C Raimondi
- Children's Oncology Group, Monrovia, California. Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Betsy A Hirsch
- Children's Oncology Group, Monrovia, California. Department of Laboratory Medicine and Pathology, University of Minnesota Cancer Center, Minneapolis, Minnesota
| | - Alan S Gamis
- Children's Oncology Group, Monrovia, California. Division of Hematology-Oncology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Children's Oncology Group, Monrovia, California. Department of Pediatrics, University of Washington, Seattle, Washington
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington. Department of Epidemiology, University of Washington, Seattle, Washington.
| |
Collapse
|
17
|
Alonso-Orgaz S, Moreno-Luna R, López JA, Gil-Dones F, Padial LR, Moreu J, de la Cuesta F, Barderas MG. Proteomic characterization of human coronary thrombus in patients with ST-segment elevation acute myocardial infarction. J Proteomics 2014; 109:368-81. [DOI: 10.1016/j.jprot.2014.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 01/04/2023]
|
18
|
Bora A, Ubaida Mohien C, Chaerkady R, Chang L, Moxley R, Sacktor N, Haughey N, McArthur JC, Cotter R, Nath A, Graham DR. Identification of putative biomarkers for HIV-associated neurocognitive impairment in the CSF of HIV-infected patients under cART therapy determined by mass spectrometry. J Neurovirol 2014; 20:457-65. [PMID: 25056907 DOI: 10.1007/s13365-014-0263-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 05/16/2014] [Accepted: 06/12/2014] [Indexed: 12/27/2022]
Abstract
We identified and measured proteins in the cerebral spinal fluid (CSF) involved in HIV-associated neurological disorders. Protein levels were determined by mass spectrometry (MS) in pooled CSF taken from three patient groups (human immunodeficiency virus (HIV)-1-infected patients that developed HIV-associated neurocognitive disorders (HANDs), HIV-1-infected patients without HAND, and healthy controls). Pools were generated from 10 patients each per group. CSF from individual patient groups were digested with trypsin and separately labeled using with isobaric tags for relative and absolute quantitation (iTRAQ). After combining all samples in one, peptides were extensively fractionated by offline two-dimensional separation and identified by tandem MS. One hundred and ninety three proteins were deemed to be interpretable for quantitation based on permutation tests with a 95 % confidence interval with a p value ≤ 0.05. Using a cutoff of 1.5-fold for upregulation and 0.6 for downregulation, 16 proteins were differentially expressed in HIV + HAND (reporter p value ≤0.05) with seven of them previously described as HIV-interacting proteins: endoplasmin, mitochondrial damage mediator-BH3-interacting domanin death agonist, orosomucoid, apolipoprotein E, metalloproteinase inhibitor 2, peroxiredoxin-2, and the nuclear protein, ruvB-like 2. Several previously unidentified proteins with possible neurological implication in HIV patients include forming-binding protein 1, C-reactive protein, leukocyte-associated immunoglobulin receptor 1, renin receptor, mediator of RNA polymerase II transcription subunit 14, multimerin-2, alpha-N-acetylglucosaminidase, caldesmon, and cadherin EGF LAG G-type receptor. Our results suggest that not only a few but possibly a combination of biomarkers that are highly correlated can predict neurocognitive status in HIV-infected patients and might be involved in monocyte or macrophage activation.
Collapse
Affiliation(s)
- Adriana Bora
- Department of Molecular and Comparative Pathobiology-Retrovirus Laboratory, Baltimore, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Byerly MS, Petersen PS, Ramamurthy S, Seldin MM, Lei X, Provost E, Wei Z, Ronnett GV, Wong GW. C1q/TNF-related protein 4 (CTRP4) is a unique secreted protein with two tandem C1q domains that functions in the hypothalamus to modulate food intake and body weight. J Biol Chem 2013; 289:4055-69. [PMID: 24366864 DOI: 10.1074/jbc.m113.506956] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
CTRP4 is a unique member of the C1q family, possessing two tandem globular C1q domains. Its physiological function is poorly defined. Here, we show that CTRP4 is an evolutionarily conserved, ∼34-kDa secretory protein expressed in the brain. In human, mouse, and zebrafish brain, CTRP4 expression begins early in development and is widespread in the central nervous system. Neurons, but not astrocytes, express and secrete CTRP4, and secreted proteins form higher-order oligomeric complexes. CTRP4 is also produced by peripheral tissues and circulates in blood. Its serum levels are increased in leptin-deficient obese (ob/ob) mice. Functional studies suggest that CTRP4 acts centrally to modulate energy metabolism. Refeeding following an overnight fast induced the expression of CTRP4 in the hypothalamus. Central administration of recombinant protein suppressed food intake and altered the whole-body energy balance in both chow-fed and high-fat diet-fed mice. Suppression of food intake by CTRP4 is correlated with a decreased expression of orexigenic neuropeptide (Npy and Agrp) genes in the hypothalamus. These results establish CTRP4 as a novel nutrient-responsive central regulator of food intake and energy balance.
Collapse
|
20
|
Satoh K, Hirayama T, Takano K, Suzuki-Inoue K, Sato T, Ohta M, Nakagomi J, Ozaki Y. VacA, the vacuolating cytotoxin of Helicobacter pylori, binds to multimerin 1 on human platelets. Thromb J 2013; 11:23. [PMID: 24219705 PMCID: PMC3842841 DOI: 10.1186/1477-9560-11-23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/01/2013] [Indexed: 01/14/2023] Open
Abstract
Platelets were activated under the infection with H. pylori in human and mice. We investigated the role of VacA, an exotoxin released by H. pylori in this context. Acid-activated VacA, but not heated VacA, induced platelet CD62P expression. However, VacA reacted with none of the alleged VacA receptors present on platelet membranes. We therefore analyzed VacA associated proteins obtained through VacA affinity chromatography, using MALDI-TOF-MS. Multimerin1 was detected in two consecutive experiments, as the binding protein for VacA. Plasmon resonance confirmed their binding, and dot blot analysis revealed that the peptide sequence AA 321-340 of multimerin 1 is the binding site for VacA. In conclusion, we propose a new interaction between multimerin1 and VacA , which may give another insight into H. pylori-induced platelet activations under H. pylori infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yukio Ozaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, 409-3898 Chuo, Yamanashi, Japan.
| |
Collapse
|
21
|
López-Jiménez A, Walter NAR, Giné E, Santos Á, Echeverry-Alzate V, Bühler KM, Olmos P, Giezendanner S, Moratalla R, Montoliu L, Buck KJ, López-Moreno JA. A spontaneous deletion of α-synuclein is associated with an increase in CB1 mRNA transcript and receptor expression in the hippocampus and amygdala: effects on alcohol consumption. Synapse 2013; 67:280-9. [PMID: 23345080 DOI: 10.1002/syn.21639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/11/2013] [Indexed: 11/08/2022]
Abstract
α-Synuclein (α-syn) protein and endocannabinoid CB1 receptors are primarily located in presynaptic terminals. An association between α-syn and CB1 receptors has recently been established in Parkinson's disease, but it is completely unknown whether there is an association between these two proteins in alcohol addiction. Therefore, we aimed to examine the α-syn mRNA transcript and protein expression levels in the prefrontal cortex, striatum, amygdala and hippocampus. These brain regions are the most frequently implicated in alcohol and other drug addiction. In these studies, we used C57BL/6 mice carrying a spontaneous deletion of the α-syn gene (C57BL/6(Snca-/-) ) and their respective controls (C57BL/6(Snca) (+/) (+) ). These animals were monitored for spontaneous alcohol consumption (3-10%) and their response to a hypnotic-sedative dose of alcohol (3 g kg(-1) ) was also assessed. Compared with the C57BL/6(Snca+/+) mice, we found that the C57BL/6(Snca-/-) mice exhibited a higher expression level of the CB1 mRNA transcript and CB1 receptor in the hippocampus and amygdala. Furthermore, C57BL/6(Snca-/-) mice showed an increase in alcohol consumption when offered a 10% alcohol solution. There was no significant difference in sleep time after the injection of 3 g/kg alcohol. These results are the first to reveal an association between α-syn and the CB1 receptor in the brain regions that are most frequently implicated in alcohol and other drug addictions.
Collapse
Affiliation(s)
- Alejandro López-Jiménez
- Department of Psychobiology, Faculty of Psychology, Campus de Somosaguas, Complutense University, 28223 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hayward CPM. Improving blood disorder diagnosis: reflections on the challenges. Int J Lab Hematol 2013; 35:244-53. [DOI: 10.1111/ijlh.12074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 02/04/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. P. M. Hayward
- Departments of Pathology and Molecular Medicine, and Medicine; McMaster University and the Hamilton Regional Laboratory Medicine Program; Hamilton Ontario Canada
| |
Collapse
|
23
|
Brophy TM, Coller BS, Ahamed J. Identification of the thiol isomerase-binding peptide, mastoparan, as a novel inhibitor of shear-induced transforming growth factor β1 (TGF-β1) activation. J Biol Chem 2013; 288:10628-39. [PMID: 23463512 DOI: 10.1074/jbc.m112.439034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
TGF-β1 is a disulfide-bonded homodimeric protein produced by platelets and other cells that plays a role in many physiologic and pathologic processes. TGF-β1 is secreted as an inactive large latent complex (LLC) comprised of TGF-β1, latency-associated peptide, and latent TGF-β binding protein 1. We previously demonstrated that shear force can activate LLC and that thiol-disulfide exchange contributes to the process. We have now investigated the role of thiol isomerases in the activation of LLC in platelet releasates (PR) and recombinant LLC. The wasp venom peptide mastoparan, which inhibits the chaperone activity of PDI, inhibited stirring- and shear-induced activation of latent TGF-β1 by 90 and 75% respectively. To identify the proteins that bind to mastoparan either directly or indirectly, PR were chromatographed on a mastoparan affinity column. Latent TGF-β binding protein 1, latency-associated peptide, TGF-β1, clusterin, von Willebrand factor, multimerin-1, protein disulfide isomerase (PDI), ERp5, ERp57, and ERp72 eluted specifically from the column. Anti-PDI RL90 attenuated the inhibitory effect of mastoparan on LLC activation. Furthermore, reduced PDI inhibited activation of PR LLC, whereas oxidized PDI had no effect. We conclude that thiol isomerases and thiol-disulfide exchange contribute to TGF-β1 activation and identify a number of molecules that may participate in the process.
Collapse
Affiliation(s)
- Teresa M Brophy
- Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | |
Collapse
|
24
|
|
25
|
|
26
|
Shield-Artin KL, Bailey MJ, Oliva K, Liovic AK, Barker G, Dellios NL, Reisman S, Ayhan M, Rice GE. Identification of ovarian cancer-associated proteins in symptomatic women: A novel method for semi-quantitative plasma proteomics. Proteomics Clin Appl 2012; 6:170-81. [DOI: 10.1002/prca.201100008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kristy L. Shield-Artin
- Department of Medicine; Monash University; Melbourne Victoria Australia
- Omics Facility; BakerIDI Medical Research Institute; Melbourne Victoria Australia
| | - Mark J. Bailey
- Veterinary medicine research and Development; Pfizer; Parkville Victoria Australia
| | - Karen Oliva
- Centre for Clinical Research; University of Queensland; Herston Queensland Australia
| | - Ana K. Liovic
- Omics Facility; BakerIDI Medical Research Institute; Melbourne Victoria Australia
| | - Gillian Barker
- Centre for Clinical Research; University of Queensland; Herston Queensland Australia
| | - Nicole L. Dellios
- Centre for Clinical Research; University of Queensland; Herston Queensland Australia
| | - Simone Reisman
- Centre for Clinical Research; University of Queensland; Herston Queensland Australia
| | - Mustafa Ayhan
- Centre for Clinical Research; University of Queensland; Herston Queensland Australia
| | - Gregory E. Rice
- Centre for Clinical Research; University of Queensland; Herston Queensland Australia
| |
Collapse
|
27
|
Niessen S, Hoover H, Gale AJ. Proteomic analysis of the coagulation reaction in plasma and whole blood using PROTOMAP. Proteomics 2011; 11:2377-88. [DOI: 10.1002/pmic.201000674] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/25/2011] [Accepted: 03/01/2011] [Indexed: 11/10/2022]
|
28
|
Pieroni L, Finamore F, Ronci M, Mattoscio D, Marzano V, Mortera SL, Quattrucci S, Federici G, Romano M, Urbani A. Proteomics investigation of human platelets in healthy donors and cystic fibrosis patients by shotgun nUPLC-MSEand 2DE: a comparative study. ACTA ACUST UNITED AC 2011; 7:630-9. [DOI: 10.1039/c0mb00135j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Pasaje CFA, Kim JH, Park BL, Cheong HS, Kim MK, Choi IS, Cho SH, Hong CS, Lee YW, Lee JY, Koh IS, Park TJ, Lee JS, Kim Y, Bae JS, Park CS, Shin HD. A possible association of EMID2 polymorphisms with aspirin hypersensitivity in asthma. Immunogenetics 2010; 63:13-21. [PMID: 21086123 DOI: 10.1007/s00251-010-0490-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/09/2010] [Indexed: 01/18/2023]
Abstract
Aspirin-intolerant asthma (AIA) is an asthma phenotype characterized by the development of bronchoconstriction following ingestion of aspirin. Despite the well-defined pathological trigger, the underlying mechanisms of AIA are still unclear. With the biophysical characteristics of the human EMI domain-containing protein 2 (EMID2) gene in relation to the extracellular matrix deposition and epithelial-mesenchymal transition as pivotal characteristics of airway remodeling in asthma, we hypothesized that genetic polymorphisms of EMID2 might affect the development of AIA. In this study, the allelic associations of 49 single-nucleotide polymorphisms (SNPs) of the human EMID2 gene were evaluated from 163 AIA patients and 429 aspirin-tolerant asthma (ATA) subjects as controls in a Korean population. Logistic analysis showed that five SNPs (P = 0.01-0.04, but P (corr) > 0.05) and EMID2_BL2_ht2 haplotype (unique to the minor alleles of rs4727494 and rs13233066; P = 0.02; P (corr) = 0.02) were significantly associated with AIA. More interestingly, regression analysis of the decline of forced expiratory volume in one second (FEV(1)) by aspirin provocation revealed that 10 SNPs (P = 0.003-0.04) and four relevant haplotypes (P = 0.002-0.02) were significantly associated with the fall rate of FEV(1) by aspirin provocation, indicating that genetic polymorphisms of EMID2 could cause meaningful deficits in the upper and lower airways among AIA patients. These findings provide evidence that EMID2 may be a susceptible genetic factor for aspirin hypersensitivity among asthmatics in Korean population.
Collapse
Affiliation(s)
- Charisse Flerida A Pasaje
- Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Maynard DM, Heijnen HFG, Gahl WA, Gunay-Aygun M. The α-granule proteome: novel proteins in normal and ghost granules in gray platelet syndrome. J Thromb Haemost 2010; 8:1786-96. [PMID: 20524979 PMCID: PMC2953603 DOI: 10.1111/j.1538-7836.2010.03932.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Deficiencies in granule-bound substances in platelets cause congenital bleeding disorders known as storage pool deficiencies. For disorders such as gray platelet syndrome (GPS), in which thrombocytopenia, enlarged platelets and a paucity of α-granules are observed, only the clinical and histologic states have been defined. OBJECTIVES In order to understand the molecular defect in GPS, the α-granule fraction protein composition from a normal individual was compared with that of a GPS patient by mass spectrometry (MS). METHODS Platelet organelles were separated by sucrose gradient ultracentrifugation. Proteins from sedimented fractions were separated by sodium dodecylsulfate polyacrylamide gel electrophoresis, reduced, alkylated, and digested with trypsin. Peptides were analyzed by liquid chromatography-tandem MS. Mascot was used for peptide/protein identification and to determine peptide false-positive rates. MassSieve was used to generate and compare parsimonious lists of proteins. RESULTS As compared with control, the normalized peptide hits (NPHs) from soluble, biosynthetic α-granule proteins were markedly decreased or undetected in GPS platelets, whereas the NPHs from soluble, endocytosed α-granule proteins were only moderately affected. The NPHs from membrane-bound α-granule proteins were similar in normal platelets and GPS platelets, although P-selectin and Glut3 were slightly decreased, consistent with immunoelectron microscopy findings in resting platelets. We also identified proteins not previously known to be decreased in GPS, including latent transforming growth factor-β-binding protein 1(LTBP1), a component of the transforming growth factor-β (TGF-β) complex. CONCLUSIONS Our results support the existence of 'ghost granules' in GPS, point to the basic defect in GPS as failure to incorporate endogenously synthesized megakaryocytic proteins into α-granules, and identify specific new proteins as α-granule inhabitants.
Collapse
Affiliation(s)
- D M Maynard
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
31
|
Mice with deleted multimerin 1 and α-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1. Thromb Res 2010; 125:e177-83. [DOI: 10.1016/j.thromres.2010.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 12/23/2009] [Accepted: 01/12/2010] [Indexed: 11/23/2022]
|
32
|
Müller J. Faktoren V und VIII. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Javerzat S, Franco M, Herbert J, Platonova N, Peille AL, Pantesco V, De Vos J, Assou S, Bicknell R, Bikfalvi A, Hagedorn M. Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system. PLoS One 2009; 4:e7856. [PMID: 19924294 PMCID: PMC2774277 DOI: 10.1371/journal.pone.0007856] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/17/2009] [Indexed: 11/18/2022] Open
Abstract
Background Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. Determining genes, which drive vascular maturation is crucial for the identification of new therapeutic targets against pathological angiogenesis. Methology/Principal Findings We accessed global gene regulation throughout maturation of the chick chorio-allantoic membrane (CAM), a highly vascularized tissue, using pan genomic microarrays. Seven percent of analyzed genes showed a significant change in expression (>2-fold, FDR<5%) with a peak occurring from E7 to E10, when key morphogenetic and angiogenic genes such as BMP4, SMO, HOXA3, EPAS1 and FGFR2 were upregulated, reflecting the state of an activated endothelium. At later stages, a general decrease in gene expression occurs, including genes encoding mitotic factors or angiogenic mediators such as CYR61, EPAS1, MDK and MYC. We identified putative human orthologs for 77% of significantly regulated genes and determined endothelial cell enrichment for 20% of the orthologs in silico. Vascular expression of several genes including ENC1, FSTL1, JAM2, LDB2, LIMS1, PARVB, PDE3A, PRCP, PTRF and ST6GAL1 was demonstrated by in situ hybridization. Up to 9% of the CAM genes were also overexpressed in human organs with related functions, such as placenta and lung or the thyroid. 21–66% of CAM genes enriched in endothelial cells were deregulated in several human cancer types (P<.0001). Interfering with PARVB (encoding parvin, beta) function profoundly changed human endothelial cell shape, motility and tubulogenesis, suggesting an important role of this gene in the angiogenic process. Conclusions/Significance Our study underlines the complexity of gene regulation in a highly vascularized organ during development. We identified a restricted number of novel genes enriched in the endothelium of different species and tissues, which may play crucial roles in normal and pathological angiogenesis.
Collapse
Affiliation(s)
- Sophie Javerzat
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Mélanie Franco
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
- * E-mail:
| | - John Herbert
- Molecular Angiogenesis Group, Institute of Biomedical Research, University of Birmingham, Medical School, Birmingham, United Kingdom
| | - Natalia Platonova
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Anne-Lise Peille
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Véronique Pantesco
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - John De Vos
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Said Assou
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Roy Bicknell
- Molecular Angiogenesis Group, Institute of Biomedical Research, University of Birmingham, Medical School, Birmingham, United Kingdom
| | - Andreas Bikfalvi
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Martin Hagedorn
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
- * E-mail:
| |
Collapse
|
34
|
Tasneem S, Adam F, Minullina I, Pawlikowska M, Hui SK, Zheng S, Miller JL, Hayward CPM. Platelet adhesion to multimerin 1 in vitro: influences of platelet membrane receptors, von Willebrand factor and shear. J Thromb Haemost 2009; 7:685-92. [PMID: 19175495 DOI: 10.1111/j.1538-7836.2009.03284.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multimerin 1 (MMRN1) is a large, homopolymeric adhesive protein, stored in platelets and endothelium, that when released, binds to activated platelets, endothelial cells and the extracellular matrix. OBJECTIVES The goals of our study were to determine if (i) MMRN1 supports adhesion of resting and/or activated platelets under conditions of blood flow, and (ii) if MMRN1 enhances platelet adhesion to types I and III collagen. PATIENTS/METHODS Platelet adhesion was evaluated using protein-coated microcapillaries, with or without added adhesive proteins and receptor antibodies. Platelets from healthy controls, Glanzmann thrombasthenia (GT) and severe von Willebrand factor (VWF)-deficient donors were tested. RESULTS MMRN1 supported the adhesion of activated, but not resting, washed platelets over a wide range of shear rates. At low shear (150 s(-1)), this adhesion was supported by integrins alphavbeta3 and glycoprotein (GP) Ibalpha but it did not require integrins alphaIIbbeta3 or VWF. At high shear (1500 s(-1)), adhesion to MMRN1 was supported by beta3 integrin-independent mechanisms, involving GPIbalpha and VWF, that did not require platelet activation when VWF was perfused over MMRN1 prior to platelets. MMRN1 bound to types I and III collagen, independent of VWF, however, its enhancing effects on platelet adhesion to collagen at high shear were VWF dependent. CONCLUSIONS MMRN1 supports platelet adhesion by VWF-dependent and -independent mechanisms that vary by flow rate. Additionally, MMRN1 binds to, and enhances, platelet adhesion to collagen. These findings suggest that MMRN1 could function as an adhesive ligand that promotes platelet adhesion at sites of vascular injury.
Collapse
Affiliation(s)
- S Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|