1
|
Yaghoubi A, Azarpira N, Karbalay-Doust S, Daneshi S, Vojdani Z, Talaei-Khozani T. Prednisolone and mesenchymal stem cell preloading protect liver cell migration and mitigate extracellular matrix modification in transplanted decellularized rat liver. Stem Cell Res Ther 2022; 13:36. [PMID: 35090559 PMCID: PMC8800282 DOI: 10.1186/s13287-022-02711-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Regenerative medicine provides promising approaches for treating chronic liver diseases. Previous studies indicate that decellularized liver architecture is damaged by invading non-hepatic inflammatory cells. This study aimed to use anti-inflammatory and regenerative potency of bone marrow-derived mesenchymal stem cells (BM-MSC) and prednisolone for reducing fibrosis and balancing inflammatory cell migration into the decellularized liver scaffold. MATERIAL AND METHOD The liver was decellularized by perfusing Sodium Lauryl Ether Sulfate (SLES), and nuclei depletion and extracellular matrix (ECM) retention were confirmed by DNA quantification, histochemical, and immunohistochemical assessments. Scaffolds were loaded with BM-MSCs, prednisolone, or a combination of both, implanted at the anatomical place in the rat partial hepatectomized and followed up for 2 and 4 weeks. RESULTS Labeled-MSCs were traced in the transplanted scaffolds; however, they did not migrate into the intact liver. Immunohistochemistry showed that the hepatoblasts, cholangiocytes, stellate, and oval cells invaded into all the scaffolds. Bile ducts were more abundant in the border of the scaffolds and intact liver. Stereological assessments showed a significant reduction in the number of lymphocytes and neutrophils in prednisolone-loaded scaffolds. The regeneration process and angiogenesis were significantly higher in the group treated with cell/prednisolone-loaded bioscaffolds. Collagen fibers were significantly reduced in the scaffolds pre-treated with cell/prednisolone, prednisolone, or BM-MSCs, compared to the control group. CONCLUSION Loading prednisolone into the scaffolds can be a worthy approach to restrict inflammation after transplantation. Although pre-loading of the scaffolds with a combination of cells/prednisolone could not alleviate inflammation, it played an important role in regeneration and angiogenesis.
Collapse
Affiliation(s)
- Atefeh Yaghoubi
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplantation Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Stereology and Morphometry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Daneshi
- Stereology and Morphometry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Yim HE, Kim DS, Chung HC, Shing B, Moon KH, George SK, Kim MW, Atala Z, Kim JH, Ko IK, Yoo JJ. Controlled Delivery of Stem Cell-Derived Trophic Factors Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury in Rats. Stem Cells Transl Med 2019; 8:959-970. [PMID: 31144785 PMCID: PMC6708069 DOI: 10.1002/sctm.18-0222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Renal disease is a worldwide health issue. Besides transplantation, current therapies revolve around dialysis, which only delays disease progression but cannot replace other renal functions, such as synthesizing erythropoietin. To address these limitations, cell‐based approaches have been proposed to restore damaged kidneys as an alternative to current therapies. Recent studies have shown that stem cell‐derived secretomes can enhance tissue regeneration. However, many growth factors undergo rapid degradation when they are injected into the body in a soluble form. Efficient delivery and controlled release of secreting factors at the sites of injury would improve the efficacy in tissue regeneration. Herein, we developed a gel‐based delivery system for controlled delivery of trophic factors in the conditioned medium (CM) secreted from human placental stem cells (HPSCs) and evaluated the effect of trophic factors on renal regeneration. CM treatment significantly enhanced cell proliferation and survival in vitro. Platelet‐rich plasma (PRP) was used as a delivery vehicle for CM. Analysis of the release kinetics demonstrated that CM delivery through the PRP gel resulted in a controlled release of the factors both in vitro and in vivo. In an acute kidney injury model in rats, functional and structural analysis showed that CM delivery using the PRP gel system into the injured kidney minimized renal tissue damage, leading to a more rapid functional recovery when compared with saline, CM, or vehicle only injection groups. These results suggest that controlled delivery of HPSC‐derived trophic factors may provide efficient repair of renal tissue injury. stem cells translational medicine2019;8:959&970
Collapse
Affiliation(s)
- Hyung Eun Yim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Pediatrics, College of Medicine, Korea University, Seoul, Korea
| | - Doo Sang Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Urology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hyun Chul Chung
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Urology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Brian Shing
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Kyung Hyun Moon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Urology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sunil K George
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Michael W Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Zachary Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Dehghani F, Aboutalebi H, Esmaeilpour T, Panjehshahin MR, Bordbar H. Effect of platelet-rich plasma (PRP) on ovarian structures in cyclophosphamide-induced ovarian failure in female rats: a stereological study. Toxicol Mech Methods 2018; 28:653-659. [DOI: 10.1080/15376516.2018.1491662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Farzaneh Dehghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, The Islamic Republic of Iran
| | - Hamideh Aboutalebi
- Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, The Islamic Republic of Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, The Islamic Republic of Iran
| | | | - Hossein Bordbar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, The Islamic Republic of Iran
- Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, The Islamic Republic of Iran
| |
Collapse
|
4
|
Sani F, Mehdipour F, Talaei-Khozani T, Sani M, Razban V. Fabrication of platelet-rich plasma/silica scaffolds for bone tissue engineering. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.17.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Farnaz Sani
- Tissue Engineering Lab, Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mehdipour
- Tissue Engineering Lab, Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Tissue Engineering Lab, Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Shoeib HM, Keshk WA, Foda AM, Abo El Noeman SEDAE. A study on the regenerative effect of platelet-rich plasma on experimentally induced hepatic damage in albino rats. Can J Physiol Pharmacol 2018; 96:630-636. [DOI: 10.1139/cjpp-2017-0738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic fibrosis is a worldwide health problem with significant morbidity and mortality. Currently, there is no effective therapy for hepatic fibrosis. The present study was aimed to evaluate the possible regenerative effect of platelet-rich plasma (PRP) against thioacetamide (TAA)-induced hepatic damage. Eighty albino rats were included; 40 were used for PRP preparation and 40 were randomly divided into 4 groups: group I (control group); group II (PRP control); group III (TAA-intoxicated by a dose of 200 mg/kg body mass, intraperitoneally, twice weekly for 7 weeks), and group IV (TAA intoxicated + PRP treated). Macrophage inflammatory protein-1α (MIP-1α) and cyclic adenosine monophosphate (cAMP) were immunoassayed in addition to peroxinitrite level, NADPH-quinone oxidoreductase-1 (NQO1) enzyme activity, and liver function. PRP treatment showed significant improvement in hepatic function, and decreased MIP-1α and peroxinitrite levels. Meanwhile, significant increase in NQO1 enzyme activity and cAMP level were observed. The histopathological results confirmed the laboratory results with improvement of hepatic architecture except for some inflammatory cellular infiltrates. This study shows that PRP has the ability to protect against TAA-induced liver damage, possibly by improving redox status, liver histopathological architecture, and disruption of the inflammatory and fibrotic response induced by TAA.
Collapse
Affiliation(s)
- Heba Mamdoh Shoeib
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Walaa Arafa Keshk
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abdallah Mahmoud Foda
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Saad El-Deen Abd Elfatah Abo El Noeman
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Martín-Solé O, Rodó J, García-Aparicio L, Blanch J, Cusí V, Albert A. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats. PLoS One 2016; 11:e0160703. [PMID: 27551718 PMCID: PMC4994962 DOI: 10.1371/journal.pone.0160703] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney’s response to ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Oriol Martín-Solé
- Unit of Pediatric Urology, Department of Pediatric Surgery, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| | - Joan Rodó
- Unit of Pediatric Urology, Department of Pediatric Surgery, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Lluís García-Aparicio
- Unit of Pediatric Urology, Department of Pediatric Surgery, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Josep Blanch
- Department of Pediatric Radiology, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Victoria Cusí
- Department of Pathology, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Asteria Albert
- Department of Pediatric Surgery, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|