1
|
Cilio S, Fallara G, Lupo Stanghellini MT, Ciceri F, Montorsi F, Lunghi F, Salonia A. Impact of Hydroxyurea to Treat Haematological Disorders on Male Fertility: Two Case Reports and a Systematic Review. World J Mens Health 2024; 42:531-542. [PMID: 38164027 PMCID: PMC11216956 DOI: 10.5534/wjmh.230069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE Hydroxyurea (HU) is a cytoreductive agent used as standard treatment option for sickle cell anaemia/disease (SCD), essential thrombocythemia (ET), and polycythaemia vera (PV). Despite its overall good safety profile, its use also in relatively young patients raises an interest on its potential impact on spermatogenesis. To perform a systematic review of all published articles investigating fertility in male patients affected by SCD, ET, and PV and treated with HU. Two paradigmatic case reports of patients affected by PV and ET, respectively, have been also reported. MATERIALS AND METHODS PubMed, EMBASE, and Cochrane databases were queried for all the published studies indexed up to November 15th, 2022. A combination of the following keywords was used: "hydroxyurea," "fertility," "male," "sperm," "sickle cell anaemia," "sickle cell disease," "essential thrombocythemia," "polycythaemia vera." RESULTS Of 48 articles identified, 8 studies, involving 161 patients, were eligible for inclusion. Overall, the number of spermatogonia per round cross section of seminiferous tubule were decreased in patients with SCD compared to healthy males. HU treatment was always associated with a worsening of semen parameters, even up to azoospermia. Notably, treatment discontinuation was associated with an improvement of semen parameters and a trend toward normalization in the case of PV and ET, with a less clear amelioration in men with SCD. In both our patients with either PV or ET, HU discontinuation was associated with a significant improvement of spermatogenesis with successful spontaneous pregnancies. CONCLUSIONS Published evidence do not consistently report normalization of spermatogenesis after HU discontinuation in SCD cases. Conversely, the literature almost consistently reported an improvement of semen parameters at the discontinuation of HU therapy in PV and ET cases. Our real-life two cases confirmed those findings. The willing of fatherhood and the need for effective fertility treatment warrant further research to improve work-up management in men with hematological disorders.
Collapse
Affiliation(s)
- Simone Cilio
- Division of Experimental Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", Napoli, Italy
| | - Giuseppe Fallara
- Division of Experimental Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Lunghi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
2
|
Scavone M, Podda GM, Tripodi A, Cattaneo M. Whole blood platelet aggregation measurement by Multiplate™: potential diagnostic inaccuracy of correcting the results for the sample platelet count. Platelets 2023; 34:2156493. [PMID: 36550076 DOI: 10.1080/09537104.2022.2156493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariangela Scavone
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Gian Marco Podda
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Armando Tripodi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Haemophilia and Thrombosis Center and Fondazione Luigi Villa, Milano, Italy
| | | |
Collapse
|
3
|
Fulvio G, Baldini C, Mosca M, di Paolo A, Bocci G, Palumbo GA, Cacciola E, Migliorini P, Cacciola R, Galimberti S. Philadelphia chromosome-negative myeloproliferative chronic neoplasms: is clonal hematopoiesis the main determinant of autoimmune and cardio-vascular manifestations? Front Med (Lausanne) 2023; 10:1254868. [PMID: 37915324 PMCID: PMC10616863 DOI: 10.3389/fmed.2023.1254868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023] Open
Abstract
In this article, we reviewed the possible mechanisms linking the clonal hematopoiesis of indeterminate potential (CHIP) to chronic myeloproliferative neoplasms (MPNs), autoimmune diseases (ADs), and cardiovascular diseases (CADs). CHIP is characterized by the presence of clonal mutations with an allelic frequency >2% in the peripheral blood without dysplasia, overt hematological neoplasms, or abnormalities in blood cell count. The prevalence may reach 20% of elderly healthy individuals and is considered a risk factor for myelodysplastic neoplasms and acute leukemia. In MPNs, CHIP is often associated with mutations such as JAK2V617F or DNMT3A, TET2, or ASXL1, which exhibit a 12.1- and 1.7-2-fold increase in CADs. Specifically, JAK2-mutated cells produce excessive cytokines and reactive oxygen species, leading to proinflammatory modifications in the bone marrow microenvironment. Consequently, the likelihood of experiencing thrombosis is influenced by the variant allele frequency (VAF) of the JAK2V617F mutation, which also appears to be correlated with anti-endothelial cell antibodies that sustain thrombosis. However, DNMT3A mutations induce pro-inflammatory T-cell polarization and activate the inflammasome complex, while TET2 downregulation leads to endothelial cell autophagy and inflammatory factor upregulation. As a result, in patients with TET2 and DNMT3A-related CHIP, the inflammasome hyperactivation represents a potential cause of CADs. CHIP also occurs in patients with large and small vessel vasculitis, while ADs are more frequently associated with MPNs. In these diseases, monocytes and neutrophils play a key role in the formation of neutrophil extracellular trap (NET) as well as anti-endothelial cell antibodies, resulting in a final procoagulant effect. ADs, such as systemic lupus erythematosus, psoriasis, and arthritis, are also characterized by an overexpression of the Rho-associated coiled-coil containing protein kinase 2 (ROCK2), a serine/threonine kinase that can hyperactivate the JAK-STAT pathway. Interestingly, hyperactivation of ROCK2 has also been observed in myeloid malignancies, where it promotes the growth and survival of leukemic cells. In summary, the presence of CHIP, with or without neoplasia, can be associated with autoimmune manifestations and thrombosis. In the presence of these manifestations, it is necessary to consider a "disease-modifying therapy" that may either reduce the clonal burden or inhibit the clonally activated JAK pathway.
Collapse
Affiliation(s)
- Giovanni Fulvio
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
- Department of Clinical and Translational Science, University of Pisa, Pisa, Italy
| | - Chiara Baldini
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
| | - Marta Mosca
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
| | - Antonello di Paolo
- Department of Clinical and Experimental Medicine, Clinical Pharmacology, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, Clinical Pharmacology, University of Pisa, Pisa, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Hematology, University of Catania, Catania, Italy
| | - Emma Cacciola
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Hemostasis, University of Catania, Catania, Italy
| | - Paola Migliorini
- Department of Clinical and Experimental Medicine, Clinical Immunology, University of Pisa, Pisa, Italy
| | - Rossella Cacciola
- Department of Clinical and Experimental Medicine, Hemostasis, University of Catania, Catania, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Hematology, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Maugeri N, Manfredi AA. "Unconventional CD147-dependent platelet activation elicited by SARS-CoV-2 in COVID-19": Reply. J Thromb Haemost 2022; 20:2161-2163. [PMID: 35968795 PMCID: PMC9537793 DOI: 10.1111/jth.15790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Norma Maugeri
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Angelo A Manfredi
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
5
|
The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood 2021; 137:2152-2160. [PMID: 33649757 DOI: 10.1182/blood.2020008109] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Thrombotic, vascular, and bleeding complications are the most common causes of morbidity and mortality in the Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). In these disorders, circulating red cells, leukocytes, and platelets, as well as some vascular endothelial cells, each have abnormalities that are cell-intrinsic to the MPN driver mutations they harbor (eg, JAK2 V617F). When these cells are activated in the MPNs, their interactions with each other create a highly proadhesive and prothrombotic milieu in the circulation that predisposes patients with MPN to venous, arterial, and microvascular thrombosis and occlusive disease. Bleeding problems in the MPNs are caused by the MPN blood cell-initiated development of acquired von Willebrand disease. The inflammatory state created by MPN stem cells in their microenvironment extends systemically to amplify the clinical thrombotic tendency and, at the same time, preferentially promote further MPN stem cell clonal expansion, thereby generating a vicious cycle that favors a prothrombotic state in these diseases.
Collapse
|
6
|
Platelet Reactivity and Response to Aspirin and Clopidogrel in Patients with Platelet Count Disorders. Cardiol Res Pract 2021; 2021:6637799. [PMID: 33953974 PMCID: PMC8068533 DOI: 10.1155/2021/6637799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/15/2021] [Accepted: 04/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Platelet reactivity and response to antiplatelet drugs, acetylsalicylic acid (ASA) and clopidogrel, in patients with thrombocytopenia and thrombocythemia can have a potentially important effect on the outcome. The effectiveness and safety of antiplatelet drugs in such patients has not been well examined. Measuring the effect of ASA and clopidogrel on platelets could help guide the therapy. Nevertheless, platelet response to antiplatelet drugs is not routinely measured in platelet count disorders and relevant evidence is scarce. Aims The study aimed to measure platelet reactivity and response to ASA and clopidogrel in patients with platelet count disorders. Materials and Methods This was a cross-sectional study of consecutive patients hospitalized in cardiology and hematology departments in the years 2018–2019. The study included patients with thrombocytopenia (PLT < 150 G/L) and thrombocythemia (PLT > 450 G/L) on ASA or dual antiplatelet therapy (DAPT; ASA plus clopidogrel). Controls included patients on antiplatelet drugs with normal platelet count. Platelet reactivity was measured in whole blood (Multiplate aggregometer, Roche, Switzerland) using arachidonic acid (AA), adenosine-5′-diphosphate (ADP), and thrombin receptor agonist peptide-6 (TRAP) as agonists. Platelet aggregation was expressed in arbitrary units (AU). AA-induced aggregation was used as a measure of response to ASA with a cut-off above 30 AU showing high on-treatment platelet reactivity to ASA (HTPR-A). ADP-induced aggregation measured response to clopidogrel with a cut-off above 48 AU for high on-treatment platelet reactivity to clopidogrel (HTPR-C). TRAP-induced aggregation measured baseline platelet reactivity not affected by oral antiplatelet drugs. Results The study included 174 patients. There were 64 patients with thrombocytopenia, 30 patients with chronic thrombocythemia, and 80 controls. All patients were on 75 mg of ASA and 32% of them additionally on 75 mg of clopidogrel due to a history of recent coronary artery angioplasty. AA- and ADP-induced aggregation was comparable between thrombocytopenic patients and controls (median (IQR) 19 (7–28) vs. 23 (15–38) for AA AU and 32 (16–44) vs. 50 (32–71) for ADP AU, respectively), while it was significantly higher in thrombocythemic patients (median (IQR) 80 (79–118) for AA AU and 124 (89–139) for ADP AU). TRAP-induced aggregation showed significantly lowest aggregation in thrombocytopenic (median (IQR) 41 (34–60) for TRAP AU) and highest in thrombocythemic patients (median (IQR) 137 (120–180) for TRAP AU). HTPR-A was frequent in thrombocythemic patients in comparison with thrombocytopenic patients and controls (60% vs. 4% vs. 15%, respectively; p < 0.0002). HTPR-C was highly common in thrombocythemic patients and least common in thrombocytopenic ones in comparison with controls (80% vs. 8% vs. 40%, respectively; p < 0.001). Conclusion Chronic thrombocytopenia does not significantly affect platelet reactivity and response to ASA and clopidogrel in comparison with controls. Thrombocytosis significantly increases platelet reactivity and attenuates response to both ASA and clopidogrel.
Collapse
|
7
|
Scavone M, Rizzo J, Femia EA, Podda GM, Bossi E, Caberlon S, Paroni R, Cattaneo M. Patients with Essential Thrombocythemia may be Poor Responders to Enteric-Coated Aspirin, but not to Plain Aspirin. Thromb Haemost 2020; 120:1442-1453. [PMID: 32717754 DOI: 10.1055/s-0040-1714351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Essential thrombocythemia (ET) patients are treated with aspirin (acetylsalicylic acid [ASA]) to prevent thrombosis. Previous studies showed that serum thromboxane (Tx) B2 was high 24 hours after enteric-coated (EC)-ASA in ET patients, due to increased number of noninhibited reticulated platelets (RPs), consequent to high platelet turnover, and that ASA should be given twice a day to ET patients. We studied ET patients (n = 17) and healthy subjects (n = 10) on 100 mg EC-ASA once daily; experiments were repeated after 14-day treatment with 100 mg plain-ASA once daily. Serum TxB2, plasma ASA, and salicylic acid (SA) were measured before the morning dose and up to 8 hours thereafter. Blood activity of ASA-deacethylating esterases, in vitro inhibition of collagen-induced TxB2 production by ASA (10-1,000 µM), and number of RP were measured. TxB2 inhibition by ASA in vitro and esterases activities were normal in all subjects. EC-ASA elicited highly variable responses; 6 ET patients were poor responders, as their serum TxB2 was high after EC-ASA; their plasma levels of ASA and SA were low/undetectable. In contrast to EC-ASA, plain ASA decreased serum TxB2 and increased plasma ASA and SA in all subjects. Serum TxB2 was high in ET patients at 24 hours and significantly correlated with RP count (but not RP percentage) and platelet count. Plain ASA should be used in ET patients to inhibit platelets efficiently. The identification of ET patients who might benefit from twice a day ASA could simply be based on their platelet count: since their platelet turnover is not increased, ET patients with normalized platelet count should not need twice a day ASA treatment.
Collapse
Affiliation(s)
- Mariangela Scavone
- Laboratory of Hemostasis and Thrombosis, Dipartimento di Scienze della Salute, Università degli Studi di Milan, Milan, Lombardia, Italy
| | - Jessica Rizzo
- Clinical Biochemistry and Mass Spectrometry, Dipartimento di Scienze della Salute, Università degli Studi di Milan, Milan, Lombardia, Italy
| | - Eti A Femia
- Laboratory of Hemostasis and Thrombosis, Dipartimento di Scienze della Salute, Università degli Studi di Milan, Milan, Lombardia, Italy
| | - Gian Marco Podda
- Laboratory of Hemostasis and Thrombosis, Dipartimento di Scienze della Salute, Università degli Studi di Milan, Milan, Lombardia, Italy.,Unità di Medicina, ASST Santi Paolo e Carlo, Ospedale San Paolo, Milan, Italy
| | - Elena Bossi
- Laboratory of Hemostasis and Thrombosis, Dipartimento di Scienze della Salute, Università degli Studi di Milan, Milan, Lombardia, Italy
| | - Sabrina Caberlon
- Unità di Medicina, ASST Santi Paolo e Carlo, Ospedale San Paolo, Milan, Italy
| | - Rita Paroni
- Clinical Biochemistry and Mass Spectrometry, Dipartimento di Scienze della Salute, Università degli Studi di Milan, Milan, Lombardia, Italy
| | - Marco Cattaneo
- Laboratory of Hemostasis and Thrombosis, Dipartimento di Scienze della Salute, Università degli Studi di Milan, Milan, Lombardia, Italy.,Unità di Medicina, ASST Santi Paolo e Carlo, Ospedale San Paolo, Milan, Italy
| |
Collapse
|
8
|
Munnix ICA, Van Oerle R, Verhezen P, Kuijper P, Hackeng CM, Hopman-Kerkhoff HIJ, Hudig F, Van De Kerkhof D, Leyte A, De Maat MPM, Oude Elferink RFM, Ruinemans-Koerts J, Schoorl M, Slomp J, Soons H, Stroobants A, Van Wijk E, Henskens YMC. Harmonizing light transmission aggregometry in the Netherlands by implementation of the SSC-ISTH guideline. Platelets 2020; 32:516-523. [PMID: 32522065 DOI: 10.1080/09537104.2020.1771549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light transmission aggregometry (LTA) is considered the gold standard method for evaluation of platelet function. However, there are a lot of variation in protocols (pre-analytical procedures and agonist concentrations) and results. The aim of our study was to establish a national LTA protocol, to investigate the effect of standardization and to define national reference values for LTA. The SSC guideline was used as base for a national procedure. Almost all recommendations of the SSC were followed e.g. no adjustment of PRP, citrate concentration of 109 mM, 21 needle gauge, fasting, resting time for whole blood and PRP, centrifugation time, speed and agonists concentrations. LTA of healthy volunteers was measured in a total of 16 hospitals with 5 hospitals before and after standardization. Results of more than 120 healthy volunteers (maximum aggregation %) were collected, with participating laboratories using 4 different analyzers with different reagents. Use of low agonist concentrations showed high variation before and after standardization, with the exception of collagen. For most high agonist concentrations (ADP, collagen, ristocetin, epinephrine and arachidonic acid) variability in healthy subjects decreased after standardization. We can conclude that a standardized Dutch protocol for LTA, based on the SSC guideline, does not result in smaller variability in healthy volunteers for all agonist concentrations.
Collapse
Affiliation(s)
- I C A Munnix
- Department of Clinical Chemistry, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - R Van Oerle
- Central Diagnostic Laboratory, Maastricht University Medical Centre +, Maastricht, The Netherlands
| | - P Verhezen
- Central Diagnostic Laboratory, Maastricht University Medical Centre +, Maastricht, The Netherlands
| | - P Kuijper
- Clinical Laboratory, Maxima Medical Centre, Veldhoven, The Netherlands
| | - C M Hackeng
- Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - F Hudig
- LabWest, Haga Teaching Hospital, The Hague, The Netherlands
| | - D Van De Kerkhof
- Clinical Laboratory, Catharina Hospital, Eindhoven, The Netherlands
| | - A Leyte
- Department of Clinical Chemistry, OLVG Laboratoria BV, Amsterdam, The Netherlands
| | - M P M De Maat
- Department of Hematology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - J Ruinemans-Koerts
- Department of Clinical Chemistry and Haematology, Rijnstate Hospital, Arnhem, The Netherlands
| | - M Schoorl
- Department of Clinical Chemistry, Haematology & Immunology,Northwest Clinics, Alkmaar, The Netherlands
| | - J Slomp
- Department of Clinical Chemistry, Medlon, Location Medisch Spectrum Twente, Enschede, The Netherlands
| | - H Soons
- Department of Clinical Chemistry, St. Anna Hospital, Geldrop, The Netherlands
| | - A Stroobants
- Department of Clinical Chemistry, AmsterdamUMC Location AMC, Amsterdam, The Netherlands
| | - E Van Wijk
- Department of Clinical Chemistry, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - Y M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre +, Maastricht, The Netherlands
| |
Collapse
|
9
|
Smith BB, Boswell MR, Matzek LJ, Smith MM. Thrombocytosis: Perioperative Considerations for Patients Undergoing Cardiac Surgery. J Cardiothorac Vasc Anesth 2020; 34:772-781. [DOI: 10.1053/j.jvca.2019.07.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 11/11/2022]
|
10
|
Marin Oyarzún CP, Heller PG. Platelets as Mediators of Thromboinflammation in Chronic Myeloproliferative Neoplasms. Front Immunol 2019; 10:1373. [PMID: 31258539 PMCID: PMC6587101 DOI: 10.3389/fimmu.2019.01373] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic myeloproliferative neoplasms (MPN) are stem cell disorders driven by mutations in JAK2, CALR, or MPL genes and characterized by myeloid proliferation and increased blood cell counts. They encompass three closely related conditions, including essential thrombocythemia, polycythemia vera, and primary myelofibrosis. Elevated levels of cytokines released by clonal and non-clonal cells generate a chronic proinflammatory state that contributes to disease pathogenesis. Thrombosis represents the most common cause of morbidity and mortality in MPN, although paradoxically, patients may also present with a bleeding diathesis. The mechanisms leading to thrombosis are complex and multiple and include increased blood cells together with qualitative abnormalities of red cells, leukocytes, and platelets that favor a prothrombotic activated phenotype. The functional interplay between blood cells, the clotting cascade, and dysfunctional endothelium contributes to hypercoagulability and this process is perpetuated by the effect of inflammatory cytokines. In addition to their well-known function in hemostasis, platelets contribute to innate immunity and inflammation and play a key role in MPN thromboinflammatory state. In vivo platelet activation leads to platelet aggregate formation and exposure of adhesion molecules which favor their interaction with activated neutrophils and monocytes leading to circulating platelet-leukocyte heterotypic aggregates. Platelets are recruited to the activated endothelium further enhancing the reciprocal activation of both cell types. Crosstalk between activated cells drives cytokine production, further fuelling the self-reinforcing thromboinflammatory loop. In addition, MPN platelets provide a procoagulant scaffold which triggers the coagulation cascade and platelet-derived microparticles amplify this response. Markers of platelet, leukocyte, endothelial and coagulation activation are increased in MPN patients although prospective studies are required to determine the potential value of these parameters for identifying patients at increased thrombotic risk. Thrombosis remains the main complication of MPN patients, with a high risk of recurrence despite adequate cytoreductive and antithrombotic treatment. Deeper insight into the mechanism favoring thrombosis development in this setting may lead to novel therapeutic approaches for MPN thrombosis. Considering the critical role of inflammation in the vascular risk, concomitant targeting of inflammatory pathways could potentially impact on primary or secondary prevention strategies.
Collapse
Affiliation(s)
- Cecilia P Marin Oyarzún
- Department of Hematology Research, National Scientific and Technical Research Council (CONICET), Institute of Medical Research (IDIM) "Dr. Alfredo Lanari", University of Buenos Aires, Buenos Aires, Argentina
| | - Paula G Heller
- Department of Hematology Research, National Scientific and Technical Research Council (CONICET), Institute of Medical Research (IDIM) "Dr. Alfredo Lanari", University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|