1
|
Development of an IgY-Based Treatment to Control Bovine Coronavirus Diarrhea in Dairy Calves. Viruses 2023; 15:v15030708. [PMID: 36992417 PMCID: PMC10059803 DOI: 10.3390/v15030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Bovine Coronavirus (BCoV) is a major pathogen associated with neonatal calf diarrhea. Standard practice dictates that to prevent BCoV diarrhea, dams should be immunized in the last stage of pregnancy to increase BCoV-specific antibody (Ab) titers in serum and colostrum. For the prevention to be effective, calves need to suck maternal colostrum within the first six to twelve hours of life before gut closure to ensure a good level of passive immunity. The high rate of maternal Ab transfer failure resulting from this process posed the need to develop alternative local passive immunity strategies to strengthen the prevention and treatment of BCoV diarrhea. Immunoglobulin Y technology represents a promising tool to address this gap. In this study, 200 laying hens were immunized with BCoV to obtain spray-dried egg powder enriched in specific IgY Abs to BCoV on a large production scale. To ensure batch-to-batch product consistency, a potency assay was statistically validated. With a sample size of 241, the BCoV-specific IgY ELISA showed a sensitivity and specificity of 97.7% and 98.2%, respectively. ELISA IgY Abs to BCoV correlated with virus-neutralizing Ab titers (Pearson correlation, R2 = 0.92, p < 0.001). Most importantly, a pilot efficacy study in newborn calves showed a significant delay and shorter duration of BCoV-associated diarrhea and shedding in IgY-treated colostrum-deprived calves. Calves were treated with milk supplemented with egg powder (final IgY Ab titer to BCoV ELISA = 512; VN = 32) for 14 days as a passive treatment before a challenge with BCoV and were compared to calves fed milk with no supplementation. This is the first study with proof of efficacy of a product based on egg powder manufactured at a scale that successfully prevents BCoV-associated neonatal calf diarrhea.
Collapse
|
2
|
Liu R, Sun W, Sun T, Zhang W, Nan Y, Zhang Z, Xiang K, Yang H, Wang F, Ge J. Nano selenium-enriched probiotic Lactobacillus enhances alum adjuvanticity and promotes antigen-specific systemic and mucosal immunity. Front Immunol 2023; 14:1116223. [PMID: 36793732 PMCID: PMC9922588 DOI: 10.3389/fimmu.2023.1116223] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 02/17/2023] Open
Abstract
Nano selenium-enriched probiotics have been identified to improve immune responses, such as alleviating inflammation, antioxidant function, treatment of tumors, anticancer activity, and regulating intestinal flora. However, so far, there is little information on improving the immune effect of the vaccine. Here, we prepared nano selenium-enriched Levilactobacillus brevis 23017 (SeL) and heat-inactivated nano selenium-enriched L. brevis 23017 (HiSeL) and evaluated their immune enhancing functions on the alum-adjuvanted, inactivated Clostridium perfringens type A vaccine in mouse and rabbit models, respectively. We found that SeL enhanced immune responses of the vaccine by inducing a more rapid antibody production, eliciting higher immunoglobulin G (IgG) antibody titers, improving secretory immunoglobulin A (SIgA) antibody level and cellular immune response, and regulating Th1/Th2 immune response, thus helping to induce better protective efficacy after challenge. Moreover, we confirmed that the immunoenhancement effects are related to regulating oxidative stress, cytokine secretion, and selenoprotein expression. Meanwhile, similar effects were observed in HiSeL. In addition, they show enhanced humoral immune response at 1/2 and 1/4 standard vaccine doses, which confirms their prominent immune enhancement effect. Finally, the effect of improving vaccine immune responses was further confirmed in rabbits, which shows that SeL stimulates the production of IgG antibodies, generates α toxin-neutralizing antibodies rapidly, and reduces the pathological damage to intestine tissue. Our study demonstrates that nano selenium-enriched probiotics improve the immune effect of the alum adjuvants vaccine and highlight its potential usage in remedying the disadvantages of alum adjuvants.
Collapse
Affiliation(s)
- Runhang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Weijiao Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianzhi Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenzhi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongchao Nan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zheng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kongrui Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongliang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China,*Correspondence: Fang Wang, ; Junwei Ge,
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, China,*Correspondence: Fang Wang, ; Junwei Ge,
| |
Collapse
|
3
|
Xiao N, Huang X, He W, Yao Y, Wu N, Xu M, Du H, Zhao Y, Tu Y. A review on recent advances of egg byproducts: Preparation, functional properties, biological activities and food applications. Food Res Int 2021; 147:110563. [PMID: 34399539 DOI: 10.1016/j.foodres.2021.110563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
The rapid development of egg industries produced vast byproducts that have not been effectively used. In this paper, the comprehensive utilization of egg byproducts was reviewed. Protein extraction and enzymatic hydrolysis were the main used ways for recycle of egg byproducts. The fact that eggshell membrane could accelerate would healing and improve facial skin of healthy people for 12 weeks was found. However, salted egg white had poor functional properties owing to high salt and ultrafiltration was an effective technology to remove 92.93% of salt. Moreover, Defatted yolk protein had the great potential to be used as food additives and functional foods. Other egg byproducts such as egg inhibitor and eggshells also were discussed. The novel applications of egg byproducts in the food field included food additives, feeds, food packaging materials and nutraceuticals based on current knowledge, but the proportion needed to be improved. This paper would provide a new insight for comprehensive utilization of egg byproducts.
Collapse
Affiliation(s)
- Nanhai Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi Huang
- National Research and Development Center for Egg Processing, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wen He
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
Vega CG, Bok M, Ebinger M, Rocha LA, Rivolta AA, González Thomas V, Muntadas P, D'Aloia R, Pinto V, Parreño V, Wigdorovitz A. A new passive immune strategy based on IgY antibodies as a key element to control neonatal calf diarrhea in dairy farms. BMC Vet Res 2020; 16:264. [PMID: 32727468 PMCID: PMC7388481 DOI: 10.1186/s12917-020-02476-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/13/2020] [Indexed: 11/30/2022] Open
Abstract
Background Neonatal diarrhea remains one of the main causes of morbi-mortality in dairy calves under artificial rearing. It is often caused by infectious agents of viral, bacterial, or parasitic origin. Cows vaccination and colostrum intake by calves during the first 6 h of life are critical strategies to prevent severe diarrhea but these are still insufficient. Here we report the field evaluation of a product based on IgY antibodies against group A rotavirus (RVA), coronavirus (CoV), enterotoxigenic Escherichia coli, and Salmonella sp. This product, named IgY DNT, has been designed as a complementary passive immunization strategy to prevent neonatal calf diarrhea. The quality of the product depends on the titers of specific IgY antibodies to each antigen evaluated by ELISA. In the case of the viral antigens, ELISA antibody (Ab) titers are correlated with protection against infection in calves experimentally challenged with RVA and CoV (Bok M, et al., Passive immunity to control bovine coronavirus diarrhea in a dairy herd in Argentina, 2017), (Vega C, et al., Vet Immunol Immunopathol, 142:156–69, 2011), (Vega C, et al., Res Vet Sci, 103:1–10, 2015). To evaluate the efficiency in dairy farms, thirty newborn Holstein calves were randomly assigned to IgY DNT or control groups and treatment initiated after colostrum intake and gut closure. Calves in the IgY DNT group received 20 g of the oral passive treatment in 2 L of milk twice a day during the first 2 weeks of life. Animals were followed until 3 weeks of age and diarrhea due to natural exposure to infectious agents was recorded during all the experimental time. Results Results demonstrate that the oral administration of IgY DNT during the first 2 weeks of life to newborn calves caused a delay in diarrhea onset and significantly reduced its severity and duration compared with untreated calves. Animals treated with IgY DNT showed a trend towards a delay in RVA infection with significantly shorter duration and virus shedding compared to control calves. Conclusions This indicates that IgY DNT is an effective product to complement current preventive strategies against neonatal calf diarrhea in dairy farms. Furthermore, to our knowledge, this is the only biological product available for the prevention of virus-associated neonatal calf diarrhea.
Collapse
Affiliation(s)
- Celina Guadalupe Vega
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina. .,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina. .,Bioinnovo S.A, Buenos Aires, Argentina.
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina.,Bioinnovo S.A, Buenos Aires, Argentina
| | | | - Lucía Alejandra Rocha
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina
| | - Alejandra Antonella Rivolta
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina
| | | | - Pilar Muntadas
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Buenos Aires, Argentina
| | - Ricardo D'Aloia
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Buenos Aires, Argentina
| | | | - Viviana Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina.,Bioinnovo S.A, Buenos Aires, Argentina
| | - Andrés Wigdorovitz
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina.,Bioinnovo S.A, Buenos Aires, Argentina
| |
Collapse
|
5
|
Zhao Y, Wang J, Wang H, Huang Y, Qi M, Liao S, Bin P, Yin Y. Effects of GABA Supplementation on Intestinal SIgA Secretion and Gut Microbiota in the Healthy and ETEC-Infected Weanling Piglets. Mediators Inflamm 2020; 2020:7368483. [PMID: 32565729 PMCID: PMC7271228 DOI: 10.1155/2020/7368483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Pathogenic enterotoxigenic Escherichia coli (ETEC) has been considered a major cause of diarrhea which is a serious public health problem in humans and animals. This study was aimed at examining the effect of γ-aminobutyric acid (GABA) supplementation on intestinal secretory immunoglobulin A (SIgA) secretion and gut microbiota profile in healthy and ETEC-infected weaning piglets. A total of thirty-seven weaning piglets were randomly distributed into two groups fed with the basal diet or supplemented with 40 mg·kg-1 of GABA for three weeks, and some piglets were infected with ETEC at the last week. According to whether ETEC was inoculated or not, the experiment was divided into two stages (referred as CON1 and CON2 and GABA1 and GABA2). The growth performance, organ indices, amino acid levels, and biochemical parameters of serum, intestinal SIgA concentration, gut microbiota composition, and intestinal metabolites were analyzed at the end of each stage. We found that, in both the normal and ETEC-infected piglets, jejunal SIgA secretion and expression of some cytokines, such as IL-4, IL-13, and IL-17, were increased by GABA supplementation. Meanwhile, we observed that some low-abundance microbes, like Enterococcus and Bacteroidetes, were markedly increased in GABA-supplemented groups. KEGG enrichment analysis revealed that the nitrogen metabolism, sphingolipid signaling pathway, sphingolipid metabolism, and microbial metabolism in diverse environments were enriched in the GABA1 group. Further analysis revealed that alterations in microbial metabolism were closely correlated to changes in the abundances of Enterococcus and Bacteroidetes. In conclusion, GABA supplementation can enhance intestinal mucosal immunity by promoting jejunal SIgA secretion, which might be related with the T-cell-dependent pathway and altered gut microbiota structure and metabolism.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yonggang Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | - Ming Qi
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Simeng Liao
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Peng Bin
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product, Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| |
Collapse
|
6
|
Zhang YH, Bai J, Jiang WN, Zhao CR, Ji JJ, Wang JZ, Liu YW. Promising hen egg-derived proteins/peptides (EDPs) for food engineering, natural products and precision medicines. Res Vet Sci 2020; 128:153-161. [DOI: 10.1016/j.rvsc.2019.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/19/2019] [Accepted: 11/27/2019] [Indexed: 01/15/2023]
|
7
|
Immunoenhancement effects of pentadecapeptide derived from Cyclina sinensis on immune-deficient mice induced by Cyclophosphamide. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
8
|
Mony TJ, Kwon HS, Won MK, Kang YM, Lee SH, Kim SY, Baek DY, Elahi F. Anti-urease immunoglobulin (IgY) from egg yolk prevents Helicobacter pylori infection in a mouse model. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1617251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | - Hyuck-Se Kwon
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Mi-Kyoung Won
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Yeon-Mi Kang
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Su-Hee Lee
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Su-Yeun Kim
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Doo-Yeon Baek
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Fazle Elahi
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| |
Collapse
|
9
|
Xu Z, Mao TM, Huang L, Yu ZC, Yin B, Chen ML, Cheng YH. Purification and identification immunomodulatory peptide from rice protein hydrolysates. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2018.1553938] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Zhou Xu
- College of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha, People’s Republic of China
| | - Tian-Mi Mao
- College of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha, People’s Republic of China
| | - Lu Huang
- College of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha, People’s Republic of China
| | - Zhi-Cheng Yu
- College of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha, People’s Republic of China
| | - Bo Yin
- College of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha, People’s Republic of China
| | - Mao-Long Chen
- College of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha, People’s Republic of China
| | - Yun-Hui Cheng
- College of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha, People’s Republic of China
| |
Collapse
|
10
|
Kiewiet MBG, Faas MM, de Vos P. Immunomodulatory Protein Hydrolysates and Their Application. Nutrients 2018; 10:E904. [PMID: 30011891 PMCID: PMC6073538 DOI: 10.3390/nu10070904] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Immunomodulatory protein hydrolysate consumption may delay or prevent western immune-related diseases. In order to purposively develop protein hydrolysates with an optimal and reproducible immunomodulatory effect, knowledge is needed on which components in protein hydrolysates are responsible for the immune effects. Important advances have been made on this aspect. Also, knowledge on mechanisms underlying the immune modulating effects is indispensable. In this review, we discuss the most promising application possibilities for immunomodulatory protein hydrolysates. In order to do so, an overview is provided on reported in vivo immune effects of protein hydrolysates in both local intestinal and systemic organs, and the current insights in the underlying mechanisms of these effects. Furthermore, we discuss current knowledge and physicochemical approaches to identify the immune active protein sequence(s). We conclude that multiple hydrolysate compositions show specific immune effects. This knowledge can improve the efficacy of existing hydrolysate-containing products such as sports nutrition, clinical nutrition, and infant formula. We also provide arguments for why immunomodulatory protein hydrolysates could be applied to manage the immune response in the increasing number of individuals with a higher risk of immune dysfunction due to, for example, increasing age or stress.
Collapse
Affiliation(s)
- Mensiena B G Kiewiet
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
11
|
Chalamaiah M, Yu W, Wu J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem 2018; 245:205-222. [DOI: 10.1016/j.foodchem.2017.10.087] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/25/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
|
12
|
Liao W, Jahandideh F, Fan H, Son M, Wu J. Egg Protein-Derived Bioactive Peptides: Preparation, Efficacy, and Absorption. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:1-58. [PMID: 29860972 DOI: 10.1016/bs.afnr.2018.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The hen's egg is an important protein source of human diet. On average one large egg contains ~6g protein, which contributes to ~11% of daily protein intake. As a high-quality protein, egg proteins are well recognized as excellent sources of bioactive peptides. The objectives of this chapter are to introduce generation, bioactivities, and absorption of egg protein-derived bioactive peptides. Research on egg protein-derived bioactive peptides has been progressed during the past decades. Enzymatic hydrolysis is the major technique to prepare bioactive peptides from egg protein. Quantitative structure-activity relationships-aided in silico prediction is increasingly applied as a promising tool for efficient prediction of novel bioactive peptides. A number of bioactive peptides from egg proteins have been characterized for antioxidant, immunomodulatory, antihypertensive, antidiabetic, anticancer, and antimicrobial activities. Egg protein-derived peptides that can improve bone health have been reported as well. However, molecular mechanisms of many peptides are not fully understood. The stability and absorption routes, bioavailability, safety, and production of bioactive peptides await further investigation.
Collapse
Affiliation(s)
- Wang Liao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Forough Jahandideh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Myoungjin Son
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
13
|
Lozano-Ojalvo D, López-Fandiño R. Immunomodulating peptides for food allergy prevention and treatment. Crit Rev Food Sci Nutr 2017; 58:1629-1649. [PMID: 28102702 DOI: 10.1080/10408398.2016.1275519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the most promising strategies currently assayed against IgE-mediated allergic diseases stands the possibility of using immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. This review focuses on the beneficial effects of food derived immunomodulating peptides on food allergy, which can be directly exerted in the intestinal tract or once being absorbed through the intestinal epithelial barrier to interact with immune cells. Food peptides influence intestinal homeostasis by maintaining and reinforcing barrier function or affecting intestinal cell-signalling to nearby immune cells and mucus secretion. In addition, they can stimulate cells of the innate and adaptive immune system while supressing inflammatory responses. Peptides represent an attractive alternative to whole allergens to enhance the safety and efficacy of immunotherapy treatments. The conclusions drawn from curative and preventive experiments in murine models are promising, although there is a need for more pre-clinical studies to further explore the immunomodulating strategy and its mechanisms and for a deeper knowledge of the peptide sequence and structural requirements that determine the immunoregulatory function.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| | - Rosina López-Fandiño
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| |
Collapse
|
14
|
Lozano-Ojalvo D, Molina E, López-Fandiño R. Hydrolysates of egg white proteins modulate T- and B-cell responses in mitogen-stimulated murine cells. Food Funct 2016; 7:1048-56. [DOI: 10.1039/c5fo00614g] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Egg white proteins hydrolysed with different enzymes exert immunomodulating effects and can be used as Th1- or Th2-skewing mediators.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL
- CSIC-UAM)
- 28049 Madrid
- Spain
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL
- CSIC-UAM)
- 28049 Madrid
- Spain
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL
- CSIC-UAM)
- 28049 Madrid
- Spain
| |
Collapse
|
15
|
Vega C, Bok M, Saif L, Fernandez F, Parreño V. Egg yolk IgY antibodies: A therapeutic intervention against group A rotavirus in calves. Res Vet Sci 2015; 103:1-10. [PMID: 26679788 PMCID: PMC4684595 DOI: 10.1016/j.rvsc.2015.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 12/01/2022]
Abstract
Bovine group A rotavirus (RVA) is considered the major cause of diarrhea in intensively reared neonatal calves. Chicken egg yolk antibodies (IgY) are efficient in protecting neonatal calves from RVA diarrhea; however, the value of this intervention in calves once diarrhea has appeared is unclear. The aim of the present study was to evaluate the application of RVA-specific IgY as a passive treatment in those cases. The experimental groups were: G1 = RVA-specific IgY treatment; G2 = no Ab treatment; and G3 = colostrum deprived + no Ab treatment. IgY treatment significantly reduced virus shedding, diarrhea duration and severity compared to G2 and G3 calves. However, it caused a partial suppression of systemic Ab responses to RVA that could be associated with less severe diarrhea. The oral treatment with IgY for 7 days was associated with significantly higher antibody secreting cell responses in the calves compared with other groups of animals. Neonatal calf diarrhea is a critical problem and passive therapy with IgY Abs is a way to control it. There are no solid studies using rotavirus specific IgY Abs once calves suffer from diarrhea. We provide here scientific information regarding the effects of IgY-based products. This information is critical considering that IgY Abs are being sold in several countries. We prove the therapeutic value of IgY-based treatment and the industrialization of this product.
Collapse
Affiliation(s)
- C Vega
- Instituto de Virología, CICV y A - INTA, Castelar, Buenos Aires CC 25 (1712), Argentina
| | - M Bok
- Instituto de Virología, CICV y A - INTA, Castelar, Buenos Aires CC 25 (1712), Argentina
| | - L Saif
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, USA
| | - F Fernandez
- Instituto de Virología, CICV y A - INTA, Castelar, Buenos Aires CC 25 (1712), Argentina
| | - V Parreño
- Instituto de Virología, CICV y A - INTA, Castelar, Buenos Aires CC 25 (1712), Argentina.
| |
Collapse
|
16
|
Chalamaiah M, Hemalatha R, Jyothirmayi T, Diwan PV, Bhaskarachary K, Vajreswari A, Ramesh Kumar R, Dinesh Kumar B. Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg. Nutrition 2015; 31:388-98. [DOI: 10.1016/j.nut.2014.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/08/2014] [Accepted: 08/23/2014] [Indexed: 01/17/2023]
|
17
|
Martínez-Augustin O, Rivero-Gutiérrez B, Mascaraque C, Sánchez de Medina F. Food derived bioactive peptides and intestinal barrier function. Int J Mol Sci 2014; 15:22857-73. [PMID: 25501338 PMCID: PMC4284742 DOI: 10.3390/ijms151222857] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022] Open
Abstract
A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF) whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.
Collapse
Affiliation(s)
- Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology 2, CIBERehd, University of Granada, Instituto de Investigación Biosanitaria ibs, Granada 18071, Spain.
| | - Belén Rivero-Gutiérrez
- Department of Pharmacology, CIBERehd, University of Granada, Instituto de Investigación Biosanitaria ibs, Granada 18071, Spain.
| | - Cristina Mascaraque
- IBD Center, Laboratory of Immunology in Gastroenterology, Humanitas Clinical and Research Center, Milan 20089, Italy.
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, University of Granada, Instituto de Investigación Biosanitaria ibs, Granada 18071, Spain.
| |
Collapse
|
18
|
Yu Z, Yin Y, Zhao W, Chen F, Liu J. Application and bioactive properties of proteins and peptides derived from hen eggs: opportunities and challenges. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2839-2845. [PMID: 24652758 DOI: 10.1002/jsfa.6670] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 02/11/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
Several proteins and peptides that are released in vitro and/or in vivo from hen eggs are biologically active and have a variety of functional properties in humans beyond normal nutrition, for which extensive studies have been performed. This review focuses on their biological activities, including antihypertensive, antioxidant, antimicrobial, antiadhesive, immunomodulatory and antithrombotic activities and enhancement of mineral absorption. These proteins and peptides have been shown to regulate the nervous system, cardiovascular system, immune system and gastrointestinal system. The potential application and future directions of research on these bioactive peptides and proteins in the food industry are also addressed.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, 121013, China; Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, 29634, USA
| | | | | | | | | |
Collapse
|
19
|
Chalamaiah M, Hemalatha R, Jyothirmayi T, Diwan PV, Uday Kumar P, Nimgulkar C, Dinesh Kumar B. Immunomodulatory effects of protein hydrolysates from rohu (Labeo rohita) egg (roe) in BALB/c mice. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.050] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Polanowski A, Zabłocka A, Sosnowska A, Janusz M, Trziszka T. Immunomodulatory activity accompanying chicken egg yolk immunoglobulin Y. Poult Sci 2013; 91:3091-6. [PMID: 23155018 PMCID: PMC7195453 DOI: 10.3382/ps.2012-02546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Immunity transfer from a mother to the newborn does not depend exclusively on immunoglobulins. Peptides, which are characterized by immunoregulatory properties that accompany IgG2, known as proline- rich polypeptide complex (PRP), have been discovered for the first time in ovine colostrum. In this report we present new data showing that some immunoregulatory peptides associated with the main immunoglobulin class, IgY, are also present in the avian immune system. Cytokine-inducing activity of particular fractions obtained from ovine colostrum, IgG+ (IgG2 containing PRP), IgG− (IgG2 free of PRP), and purified PRP, was compared with that of crude egg yolk IgY (IgY+), additionally purified egg yolk IgY (IgY−), and polypeptides accompanying IgY named Yolkin (Y), using an ex vivo model of whole human blood cells. It was shown that both IgG+ fraction and PRP, but not IgG−, stimulated the whole blood cells to release tumor necrosis factor-α and interleukin-1β cytokines. Similar experiments performed with hen's egg IgY preparations showed that IgY+ and Y samples showed higher cytokine-inducing activity than samples additionally purified with the use of size exclusion chromatography (IgY−). The IgY+ at a dose of 100 μg was even more active than the positive lipopolysaccharide control. It was also found that Y is able to stimulate macrophage cell line J774.2 to release nitric oxide. The results obtained suggest that IgY, the main chicken immunoglobulin fraction, is accompanied by additional polypeptides and plays a role of a transporter of biologically active substances, which was observed in the case of colostral IgG.
Collapse
Affiliation(s)
- A Polanowski
- Faculty of Food Sciences, Wrocław University of Environmental and Life Sciences, ul. Chełmońskiego 37, 51-630 Wrocław, Poland
| | | | | | | | | |
Collapse
|
21
|
Vega C, Bok M, Chacana P, Saif L, Fernandez F, Parreño V. Egg yolk IgY: protection against rotavirus induced diarrhea and modulatory effect on the systemic and mucosal antibody responses in newborn calves. Vet Immunol Immunopathol 2011; 142:156-69. [PMID: 21652087 DOI: 10.1016/j.vetimm.2011.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/30/2011] [Accepted: 05/02/2011] [Indexed: 12/18/2022]
Abstract
Bovine rotavirus (BRV) is an important cause of diarrhea in newborn calves. Local passive immunity is the most efficient protective strategy to control the disease. IgY technology (the use of chicken egg yolk immunoglobulins) is an economic and practical alternative to prevent BRV diarrhea in dairy calves. The aim of this study was to evaluate the protection and immunomodulation induced by the oral administration of egg yolk enriched in BRV specific IgY to experimentally BRV infected calves. All calves in groups Gp 1, 2 and 3 received control colostrum (CC; BRV virus neutralization Ab titer - VN=65,536; ELISA BRV IgG(1)=16,384) prior to gut closure. After gut closure, calves received milk supplemented with 6% BRV-immune egg yolk [(Gp 1) VN=2048; ELISA IgY Ab titer=4096] or non-immune control egg yolk [(Gp 2) VN<4; ELISA IgY Ab titer<4] twice a day, for 14 days. Calves receiving CC only or colostrum deprived calves (CD) fed antibody (Ab) free milk served as controls (Gp 3 and 4, respectively). Calves were inoculated with 10(5.85)focus forming units (FFU) of virulent BRV IND at 2 days of age. Control calves (Gp 3 and 4) and calves fed control IgY (Gp 2) were infected and developed severe diarrhea. Around 80% calves in Gp 1 (IgY 4096) were infected, but they showed 80% (4/5) protection against BRV diarrhea. Bovine RV-specific IgY Ab were detected in the feces of calves in Gp 1, indicating that avian antibodies (Abs) remained intact after passage through the gastrointestinal tract. At post infection day 21, the duodenum was the major site of BRV specific antibody secreting cells (ASC) in all experimental groups. Mucosal ASC responses of all isotypes were significantly higher in the IgY treated groups, independently of the specificity of the treatment, indicating that egg yolk components modulated the immune response against BRV infection at the mucosal level. These results indicate that supplementing newborn calves' diets for the first 14 days of life with egg yolk enriched in BRV-specific IgY represents a promising strategy to prevent BRV diarrhea. Moreover a strong active ASC immune response is induced in the intestinal mucosa following BRV infection after the administration of egg yolk, regardless the specificity of the treatment.
Collapse
Affiliation(s)
- C Vega
- Instituto de Virología, CICV y A - INTA, CC 25 (1712) Castelar, Bs As, Argentina.
| | | | | | | | | | | |
Collapse
|
22
|
Mills S, Stanton C, Hill C, Ross R. New Developments and Applications of Bacteriocins and Peptides in Foods. Annu Rev Food Sci Technol 2011; 2:299-329. [DOI: 10.1146/annurev-food-022510-133721] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. Mills
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
| | - C. Stanton
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Teagasc, Moorepark Food Research Center, Fermoy, County Cork, Ireland
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
| | - C. Hill
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - R.P. Ross
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Teagasc, Moorepark Food Research Center, Fermoy, County Cork, Ireland
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Zhang W, Xiao S, Samaraweera H, Lee EJ, Ahn DU. Improving functional value of meat products. Meat Sci 2010; 86:15-31. [PMID: 20537806 DOI: 10.1016/j.meatsci.2010.04.018] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 04/05/2010] [Accepted: 04/09/2010] [Indexed: 01/25/2023]
Abstract
In recent years, much attention has been paid to develop meat and meat products with physiological functions to promote health conditions and prevent the risk of diseases. This review focuses on strategies to improve the functional value of meat and meat products. Value improvement can be realized by adding functional compounds including conjugated linoneleic acid, vitamin E, n3 fatty acids and selenium in animal diets to improve animal production, carcass composition and fresh meat quality. In addition, functional ingredients such as vegetable proteins, dietary fibers, herbs and spices, and lactic acid bacteria can be directly incorporated into meat products during processing to improve their functional value for consumers. Functional compounds, especially peptides, can also be generated from meat and meat products during processing such as fermentation, curing and aging, and enzymatic hydrolysis. This review further discusses the current status, consumer acceptance, and market for functional foods from the global viewpoints. Future prospects for functional meat and meat products are also discussed.
Collapse
Affiliation(s)
- Wangang Zhang
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150, USA
| | | | | | | | | |
Collapse
|