1
|
Wei XW, Zhang Y, Zhou Y, Li M, Liu ZF, Feng XS, Tan Y. A Review on Pretreatment and Analysis Methods of Polyether Antibiotics in Complex Samples. Crit Rev Anal Chem 2023:1-25. [PMID: 37647335 DOI: 10.1080/10408347.2023.2251156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Polyether antibiotics (PAs) are the anti-coccidiosis drugs used for treating and preventing coccidiosis. Studies show the residues of these antibiotics in food cause adversities and threaten human health. PAs thus need robust, rugged, and accurate methods for their analysis. This review encompasses pretreatment and detection methods of PAs in diverse matrices since 2010. Both conventional and developed methods are part of the pretreatments, such as dispersive liquid-liquid microextraction, solid-phase extraction, solid-phase microextraction, solvent front position extraction, QuEChERS (Quick Easy Cheap Effective Rugged and Safe), supercritical fluid extraction, and others. The analysis methods involve liquid chromatography coupled with detectors, sensors, etc. The pros and cons of various techniques for PAs have been discussed and future tendencies are proposed.
Collapse
Affiliation(s)
- Xin-Wei Wei
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Huang J, Zhao K, Li M, Chen Y, Liang X, Li J. Development of an immunomagnetic bead clean-up ELISA method for detection of Maduramicin using single-chain antibody in chicken muscle. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1998388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jingjie Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal–Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing, People’s Republic of China
| | - Kunxia Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal–Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing, People’s Republic of China
| | - Miao Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal–Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing, People’s Republic of China
| | - Yingxian Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal–Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing, People’s Republic of China
| | - Xueyan Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal–Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing, People’s Republic of China
| | - Jiancheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal–Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Zhao S, Bu T, Yang K, Xu Z, Bai F, He K, Li L, Wang L. Immunochromatographic Assay Based on Polydopamine-Decorated Iridium Oxide Nanoparticles for the Rapid Detection of Salbutamol in Food Samples. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28899-28907. [PMID: 34106688 DOI: 10.1021/acsami.1c06724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salbutamol (SAL), a β-2 adrenoreceptor agonist, is an unpopular addition to livestock and poultry, causing several side effects to human health. Thus, it is very important to develop a simple and rapid analytical method to screen SAL in the field of food safety. Here, we present an immunochromatographic assay (ICA) method for sensitively detecting SAL with polydopamine-decorated iridium oxide nanoparticles (IrO2@PDA NPs) as a signal tag. The IrO2@PDA with excellent hydrophilicity, biocompatibility, and stability was synthesized by oxidating self-polymerization of dopamine hydrochloride (DAH) on the surface of IrO2 NPs and used to label monoclonal antibodies (mAbs) through simple physical adsorption. Compared with IrO2 NPs, the IrO2@PDA also possessed superior optical properties and higher affinity with mAbs. With the proposed method, the limit of detection for SAL was 0.002 ng/mL, which was improved at least 24-fold and 180-fold compared with the IrO2 NPs-based ICA and conventional gold nanoparticles-based ICA, respectively. Furthermore, the SAL residuals in pork, pork liver, and beef were successfully detected by the developed biosensor and the recoveries ranged from 85.56% to 115.56%. Briefly, this work indicated that the powerful IrO2@PDA-based ICA can significantly improve detection sensitivity and has huge potential for accurate and sensitive detection of harmful small molecules analytes in food safety fields.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kairong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhihao Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
4
|
He H, Sun T, Liu W, Xu Z, Han Z, Zhao L, Wu X, Ning B, Bai J. Highly sensitive detection of salbutamol by ALP-mediated plasmonic ELISA based on controlled growth of AgNPs. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Chen X, Ran D, Zeng L, Xin M. Immunoassay of cooked wild rat meat by ELISA with a highly specific antibody targeting rat heat-resistant proteins. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1740180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Xiangmei Chen
- Department of Food Science and Technology, Foshan University, Guangdong, People’s Republic of China
| | - Di Ran
- Department of Food Science and Technology, Foshan University, Guangdong, People’s Republic of China
| | - Lin Zeng
- Department of Food Science and Technology, Foshan University, Guangdong, People’s Republic of China
| | - Meiguo Xin
- Department of Food Science and Technology, Foshan University, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Hu M, Wang Y, Yang J, Sun Y, Xing G, Deng R, Hu X, Zhang G. Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH 2/AuPt. Biosens Bioelectron 2019; 142:111554. [PMID: 31382098 DOI: 10.1016/j.bios.2019.111554] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Maduramicin (MD) is a type of monoglycoside polyether ionophore antibiotic that can effectively treat coccidiosis and facilitate animal growth. However, its extensive and excessive use brings potential risk to human health. Herein, an electrochemical immunosensor based on indirect competitive format was fabricated for analysis of MD residue in eggs by a multiple signal amplification system. Initially, Au nanoparticles were deposited onto glassy carbon electrode surface to load the coating antigen MD-BSA and to improve conductivity. Then the signal amplification platform was constructed by encapsulating hemin into Fe-MIL-88 NH2 metal-organic frameworks (hemin@MOFs), and then the obtained composites were decorated with AuPt nanoparticles. The synthesized hemin@MOFs/AuPt was not only used as a signal amplification mediator, but also utilized as a carrier for immobilization of horseradish peroxidase-conjugated affinipure goat anti-mouse antibody (Ab2-HRP) and horseradish peroxidase (HRP). The constructed hemin@MOFs/AuPt-Ab2-HRP bioconjugates could effectively amplify the current signal since hemin@MOFs, AuPt and HRP all exhibited high catalytic activity towards the hydrogen peroxide. Moreover, the established immunosensor showed high sensitivity and stability during the detection procedure. With the synergistic catalytic effect of hemin@MOFs, AuPt and HRP, a wide detection range of 0.1-50 ng mL-1 and a low detection limit of 0.045 ng mL-1 were achieved (S/N = 3), respectively. Ultimately, the developed method displayed excellent performance in practical applications, providing a promising probability to detect other veterinary drug residues to guarantee food safety.
Collapse
Affiliation(s)
- Mei Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jifei Yang
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Guangxu Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China.
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China; Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
|