1
|
Enikeev AD, Abramov PM, Elkin DS, Komelkov AV, Beliaeva AA, Silantieva DM, Tchevkina EM. Opposite Effects of CRABP1 and CRABP2 Homologs on Proliferation of Breast Cancer Cells and Their Sensitivity to Retinoic Acid. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2107-2124. [PMID: 38462454 DOI: 10.1134/s0006297923120131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
Resistance of tumor cells to retinoic acid (RA), a promising therapeutic agent, is the major factor limiting the use of RA in clinical practice. The mechanisms of resistance to RA are still poorly understood. Cellular Retinoic Acid Binding Proteins, CRABP1 and CRABP2, are essential mediators of RA signaling, but role of the two CRABP homologs in regulating cellular sensitivity to RA has not been well studied. In addition, the effects of CRABP1 and CRABP2 on cell proliferation have not been compared. Here, using a broad panel of breast cancer cell lines with different levels of RA sensitivity/resistance, we show for the first time that in the RA-sensitive cells, CRABP1 expression is restricted by methylation, and protein levels are highly variable. In the moderately-RA-resistant cell lines, high level of CRABP1 is observed both at the mRNA and protein levels, unchanged by inhibition of DNA methylation. The cell lines with maximum resistance to RA are characterized by complete repression of CRABP1 expression realized at transcriptional and posttranscriptional levels, and exogenous expression of each of the CRABP homologs has no effect on the studied characteristics. CRABP1 and CRABP2 proteins have opposing effects on proliferation and sensitivity to RA. In particular, CRABP1 stimulates and CRABP2 reduces proliferation and resistance to RA in the initially RA-sensitive cells, while in the more resistant cells the role of each homolog in both of these parameters is reversed. Overall, we have shown for the first time that CRABP proteins exert different effects on the growth and sensitivity to RA of breast cancer cells (stimulation, suppression, or no effect) depending on the baseline level of RA-sensitivity, with the effects of CRABP1 and CRABP2 homologs on the studied properties always being opposite.
Collapse
Affiliation(s)
- Adel D Enikeev
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Pavel M Abramov
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Danila S Elkin
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Andrey V Komelkov
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Anastasiya A Beliaeva
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Darya M Silantieva
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Elena M Tchevkina
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| |
Collapse
|
2
|
Hsu YC, Huang WC, Kuo CY, Li YS, Cheng SP. Downregulation of cellular retinoic acid binding protein 1 fosters epithelial-mesenchymal transition in thyroid cancer. Mol Carcinog 2023; 62:1935-1946. [PMID: 37642311 DOI: 10.1002/mc.23626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Cellular retinoic acid binding protein 1 (CRABP1) participates in the regulation of retinoid signaling. Previous studies showed conflicting results regarding the role of CRABP1 in tumor biology, including protumorigenic and tumor-suppressive effects in different types of cancer. Our bioinformatics analyses suggested that CRABP1 expression was downregulated in thyroid cancer. Ectopic expression of CRABP1 in thyroid cancer cells suppressed migratory and invasive activity without affecting cell growth or cell cycle distribution. In transformed normal thyroid follicular epithelial cells, silencing of CRABP1 expression increased invasiveness. Additionally, CRABP1 overexpression was associated with downregulation of the mesenchymal phenotype. Kinase phosphorylation profiling indicated that CRABP1 overexpression was accompanied by a decrease in phosphorylation of epidermal growth factor (EGF) receptor and downstream phosphorylation of Akt, STAT3, and FAK, which were reversed by exogenous EGF treatment. Immunohistochemical analysis of our tissue microarrays revealed an inverse association between CRABP1 expression and disease stage of differentiated thyroid cancer. Taken together, our results suggest that CRABP1 expression is aberrantly lost in thyroid cancer, and this downregulation promotes the epithelial-mesenchymal transition at least partly through modulating EGF receptor signaling.
Collapse
Affiliation(s)
- Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Wen-Chien Huang
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Chi-Yu Kuo
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Ying-Syuan Li
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Enikeev AD, Komelkov AV, Axelrod ME, Galetsky SA, Kuzmichev SA, Tchevkina EM. CRABP1 and CRABP2 Protein Levels Correlate with Each Other but Do Not Correlate with Sensitivity of Breast Cancer Cells to Retinoic Acid. BIOCHEMISTRY (MOSCOW) 2021; 86:217-229. [PMID: 33832420 DOI: 10.1134/s0006297921020103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Retinoic acid (RA) binding proteins, CRABP1 and CRABP2, are molecular chaperones that mediate intracellular activity of RA, the key promoter of cell differentiation with tumor suppressor activity. One of the main functions of CRABP2 is delivery and transfer of RA to the nuclear receptors RAR/RXR, which leads to activation of the transcription of a wide range of retinoid-responsive genes. The functions of CRABP1 are less studied but are apparently associated with sequestration of RA in cytoplasm and limitation of its transcriptional activity, suggesting involvement of this protein in the development of RA resistance. The mechanisms regulating activity of CRABP1 are also poorly understood. Comparison of the CRABP1 level in tumor cell lines of various origins, performed for the first time here, showed absence of the CRABP1 protein in the cell lines of tumors considered to be RA-resistant, and pronounced production of this protein in the RA-sensitive cells. However, analysis carried out with a panel of breast cancer cell lines with different levels of RA-sensitivity showed that there was no correlation between the production of CRABP1 protein and the sensitivity of the cells to RA. At the same time, we found strong correlation between the expression of CRABP1 and CRABP2 proteins in all studied cell types, regardless of their origin and RA-sensitivity/resistance. Moreover, suppression of the CRABP1 level in both RA-sensitive and RA-resistant cells was shown in the cells with cells with knockdown of CRABP2 gene. The revealed CRABP2-dependent regulation of CRABP1 production is a new mechanism of the intracellular retinoic signaling system.
Collapse
Affiliation(s)
- Adel D Enikeev
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Andrey V Komelkov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.
| | - Maria E Axelrod
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Sergey A Galetsky
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Sergey A Kuzmichev
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Elena M Tchevkina
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| |
Collapse
|
4
|
Liu RZ, Garcia E, Glubrecht DD, Poon HY, Mackey JR, Godbout R. CRABP1 is associated with a poor prognosis in breast cancer: adding to the complexity of breast cancer cell response to retinoic acid. Mol Cancer 2015; 14:129. [PMID: 26142905 PMCID: PMC4491424 DOI: 10.1186/s12943-015-0380-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/07/2015] [Indexed: 12/31/2022] Open
Abstract
Background Clinical trials designed to test the efficacy of retinoic acid (RA) as an adjuvant for the treatment of solid cancers have been disappointing, primarily due to RA resistance. Estrogen receptor (ER)-negative breast cancer cells are more resistant to RA than ER-positive cells. The expression and subcellular distribution of two RA-binding proteins, FABP5 and CRABP2, has already been shown to play critical roles in breast cancer cell response to RA. CRABP1, a third member of the RA-binding protein family, has not previously been investigated as a possible mediator of RA action in breast cancer. Methods CRABP1 and CRABP2 expression in primary breast tumor tissues was analyzed using gene expression and tissue microarrays. CRABP1 levels were manipulated using siRNAs and by transient overexpression. RA-induced subcellular translocation of CRABPs was examined by immunofluorescence microscopy and immunoblotting. RA-induced transactivation of RAR was analyzed using a RA response element (RARE)-driven luciferase reporter system. Effects of CRABP1 expression and RA treatment on downstream gene expression were investigated by semi-quantitative RT-PCR analysis. Results Compared to normal mammary tissues, CRABP1 expression is significantly down-regulated in ER+ breast tumors, but maintained in triple-negative breast cancers. Elevated CRABP1 levels are associated with poor patient prognosis, high Ki67 immunoreactivity and high tumor grade in breast cancer. The prognostic significance of CRABP1 is attributed to its cytoplasmic localization. We demonstrate that CRABP1 expression attenuates RA-induced cell growth arrest and inhibits RA signalling in breast cancer cells by sequestering RA in the cytoplasm. We also show that CRABP1 affects the expression of genes involved in RA biosynthesis, trafficking and metabolism. Conclusions CRABP1 is an adverse factor for clinical outcome in triple-negative breast cancer and a potent inhibitor of RA signalling in breast cancer cells. Our data indicate that CRABP1, in conjunction with previously identified CRABP2 and FABP5, plays a key role in breast cancer cell response to RA. We propose that these three RA-binding proteins can serve as biomarkers for predicting triple-negative breast cancer response to RA, with elevated levels of either cytoplasmic CRABP1 or FABP5 associated with RA resistance, and elevated levels of nuclear CRABP2 associated with sensitivity to RA. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0380-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada
| | - Elizabeth Garcia
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada
| | - Darryl D Glubrecht
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada
| | - Ho Yin Poon
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada
| | - John R Mackey
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
5
|
Weng JTY, Wu LSH, Lee CS, Hsu PWC, Cheng ATA. Integrative epigenetic profiling analysis identifies DNA methylation changes associated with chronic alcohol consumption. Comput Biol Med 2014; 64:299-306. [PMID: 25555412 DOI: 10.1016/j.compbiomed.2014.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/27/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023]
Abstract
Alcoholism has always been a major public health concern in Taiwan, especially in the aboriginal communities. Emerging evidence supports the association between DNA methylation and alcoholism, though very few studies have examined the effect of chronic alcohol consumption on the epignome. Since 1986, we have been following up on the mental health conditions of four major aboriginal peoples of Taiwan. The 993 aboriginal people who underwent the phase 1 (1986) clinical interviews were followed up through phase 2 (1990-1992), and phase 3 (2003-2009). Selected individuals for the current study included 10 males from the phase 1 normal cohort who remained normal at phase 2 and became dependent on alcohol by phase 3 and 10 control subjects who have not had any drinking problems throughout the study. We profiled the DNA methylation changes in the blood samples collected at phases 2 and 3. Enrichment analyses have identified several biological processes related to immune system responses and aging in the control group. In contrast, differentially methylated genes in the case group were mostly associated with susceptibility to infections, as well as pathways related to muscular contraction and neural degeneration. The methylation levels of six genes were found to correlate with alcohol consumption. These include genes involved in neurogenesis (NPDC1) and inflammation (HERC5), as well as alcoholism-associated genes ADCY9, CKM, and PHOX2A. Given the limited sample size, our approach uncovered genes and disease pathways associated with chronic alcohol consumption at the epigenetic level. The results offer a preliminary methylome map that enhances our understanding of alcohol-induced damages and offers new targets for alcohol injury research.
Collapse
Affiliation(s)
- Julia Tzu-Ya Weng
- Department of Computer Science & Engineering, Yuan Ze University, Chung-Li, Taiwan; Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Chung-Li, Taiwan.
| | | | - Chau-Shoun Lee
- Department of Psychiatry, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Paul Wei-Che Hsu
- Bioinformatics Core Laboratory, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Andrew T A Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Expression and clinical significance of CRABP1 and CRABP2 in non-small cell lung cancer. Tumour Biol 2014; 35:10295-300. [DOI: 10.1007/s13277-014-2348-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/13/2014] [Indexed: 10/25/2022] Open
|
7
|
Wang F, Yang Y, Fu Z, Xu N, Chen F, Yin H, Lu X, Shen R, Lu C. Differential DNA methylation status between breast carcinomatous and normal tissues. Biomed Pharmacother 2014; 68:699-707. [PMID: 25070394 DOI: 10.1016/j.biopha.2014.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022] Open
Abstract
Breast cancer has been considered to be a multifactorial disease with a wide array of well-characterized gene mutations and chromosomal abnormalities. However, it is becoming evident that the onset or development of breast cancer also depends on epigenetic factors, although the mechanisms have not been fully elucidated. We performed a genome-wide analysis of DNA methylation of breast carcinomatous tissues and paired normal tissues to examine the differences in methylation between them. Methylation-specific polymerase chain reaction (MSP) was used to validate the hypermethylated genes screened out by DNA methylation microarray. We found that hypomethylation and hypermethylation occurred in 2753 and 1795 genes, respectively, in breast carcinomatous tissues. Meanwhile, gene ontology analysis and ingenuity pathway analysis revealed the function and pathway of several genes whose methylation status was altered in breast carcinomatous tissues. In addition, we investigated the promoter methylation status of four genes in breast carcinomatous tissue and paired normal tissues (n=30) by MSP. Promoter hypermethylation of CRABP1, HOXB13, IFNGR2, and PIK3C3 was found in 37% (11/30), 23% (7/30), 17% (5/30), and 2% (2/30) of the carcinomas, respectively. Mutation of these four important genes was critical to many types of cancer. Our results suggest that DNA methylation mechanisms may be involved in regulating the occurrence and development of breast cancer.
Collapse
Affiliation(s)
- Fengliang Wang
- Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Yafang Yang
- Department of Radiology, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Nan Xu
- First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Chen
- Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Yin
- Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Xun Lu
- Jinling High School, Nanjing, China
| | - Rong Shen
- Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Cheng Lu
- Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Bushue N, Wan YJY. Retinoid pathway and cancer therapeutics. Adv Drug Deliv Rev 2010; 62:1285-98. [PMID: 20654663 DOI: 10.1016/j.addr.2010.07.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 12/18/2022]
Abstract
The retinoids are a class of compounds that are structurally related to vitamin A. Retinoic acid, which is the active metabolite of retinol, regulates a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids exert their effects through a variety of binding proteins including cellular retinol-binding protein (CRBP), retinol-binding proteins (RBP), cellular retinoic acid-binding protein (CRABP), and nuclear receptors i.e. retinoic acid receptor (RAR) and retinoid x receptor (RXR). Because of the pleiotropic effects of retinoids, understanding the function of these binding proteins and nuclear receptors assists us in developing compounds that have specific effects. This review summarizes our current understanding of how retinoids are processed and act with an emphasis on the application of retinoids in cancer treatment and prevention.
Collapse
Affiliation(s)
- Nathan Bushue
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | |
Collapse
|
9
|
Wiegman EM, Blaese MA, Loeffler H, Coppes RP, Rodemann HP. TGFbeta-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGFbeta-receptor I signalling. Radiother Oncol 2007; 83:289-95. [PMID: 17560675 DOI: 10.1016/j.radonc.2007.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/03/2007] [Accepted: 05/03/2007] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE It has been proposed that radiation induced stimulation of ATM and downstream components involves activation of TGFbeta-1 and that this may be due to TGFbeta-1-receptor I-Smad signalling. Therefore, the aim of this study was to clarify the distinct role of TGFbeta-1-receptor I-Smad signalling in mediating ATM activity following radiation exposure. MATERIALS AND METHODS A549 cells were stably transfected with a conditionally regulatable TGFbeta-1 antisense construct (Tet-on-system) to test clonogenic activity following irradiation. Phosphorylation profile of ATM, p53, and chk2 was determined in non-cycling, serum-starved cells by immunoblotting. Likewise, A549 wild type cells were used to identify cell cycle distribution as a function of irradiation with or without pretreatment with CMK, a specific inhibitor of furin protease involved in activation of latent TGFbeta-1. Furthermore Western and immunoblot analyses were performed on serum-starved cells to investigate the dependence of ATM- and p53-stimulation on TGFbeta-1-receptor I-Smad signalling by applying a specific TGFbeta-1-receptor I inhibitor. RESULTS Knock down of TGFbeta-1 by an antisense construct significantly increased clonogenic cell survival following exposure to ionizing radiation. Likewise, CMK treatment diminished the radiation induced G1 arrest of A549 cells. Moreover, both TGFbeta-1-knock down as well as CMK treatment inhibited the fast post-radiation phosphorylation of ATM, p53, and chk2. However, as shown by the use of a specific inhibitor TGFbeta-1-receptor I-Smad signalling was not involved in this fast activation of ATM and p53. CONCLUSIONS We confirm that TGFbeta-1 plays a critical role in the stimulation of ATM- and p53 signalling in irradiated cells. However, this fast stimulation seems not to be dependent on activation of TGFbeta-1-receptor I-Smad signalling as recently proposed.
Collapse
Affiliation(s)
- Erwin M Wiegman
- Department of Radiation Oncology, Eberhard-Karls-University Tuebingen, Germany
| | | | | | | | | |
Collapse
|
10
|
Pfoertner S, Goelden U, Hansen W, Toepfer T, Geffers R, Ukena SN, von Knobloch R, Hofmann R, Buer J, Schrader AJ. Cellular retinoic acid binding protein I: expression and functional influence in renal cell carcinoma. Tumour Biol 2005; 26:313-23. [PMID: 16254461 DOI: 10.1159/000089262] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 06/03/2005] [Indexed: 11/19/2022] Open
Abstract
Despite the known anti-proliferative and tumor-suppressive effects seen with retinoic acid (RA), treatment of metastatic renal cell carcinoma (RCC) failed to meet the initial expectations. As the exact mechanisms of action of RA and especially the role of the cellular RA binding proteins (CRABP) have not been elucidated yet, we investigated the expression of CRABP-I and its potential influence on RA response in RCC. Real-time RT-PCR analysis disclosed a significant lack of CRABP-I expression in four RCC cell lines and 12 primary RCC samples; in contrast, high expression levels were found in the respective adjacent normal kidney tissue. To further investigate the impact of CRABP-I on RA response in RCC, A-498 RCC cells were employed as a cellular model system. CRABP-I was stably transfected into A-498 cells which consequently displayed substantial resistance to all-trans (ATRA) and 9-cis RA compared to vector controls lacking CRABP-I. Comparison of gene expression profiles of ATRA-treated CRABP-I-expressing A-498 cells and vector controls revealed specific regulation of 54 of approximately 20,000 genes tested on a selected human CodeLink UniSet Bioarray, with a prominent modulation of genes involved in transcriptional control, signaling, apoptosis, cell cycle regulation and metabolism. The genetic changes reported here contribute to a better understanding of the role of RA in RCC. They also provide new insights into CRABP-I-mediated signaling and gene expression.
Collapse
Affiliation(s)
- Susanne Pfoertner
- Department of Cell Biology and Immunology, German Research Center for Biotechnology, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Armstrong JL, Ruiz M, Boddy AV, Redfern CPF, Pearson ADJ, Veal GJ. Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells. Br J Cancer 2005; 92:696-704. [PMID: 15714209 PMCID: PMC2361877 DOI: 10.1038/sj.bjc.6602398] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recent data indicate that isomerisation to all-trans retinoic acid (ATRA) is the key mechanism underlying the favourable clinical properties of 13-cis retinoic acid (13cisRA) in the treatment of neuroblastoma. Retinoic acid (RA) metabolism is thought to contribute to resistance, and strategies to modulate this may increase the clinical efficacy of 13cisRA. The aim of this study was to test the hypothesis that retinoids, such as acitretin, which bind preferentially to cellular retinoic acid binding proteins (CRABPs), or specific inhibitors of the RA hydroxylase CYP26, such as R116010, can increase the intracellular availability of ATRA. Incubation of SH-SY5Y cells with acitretin (50 μM) or R116010 (1 or 10 μM) in combination with either 10 μM ATRA or 13cisRA induced a selective increase in intracellular levels of ATRA, while 13cisRA levels were unaffected. CRABP was induced in SH-SY5Y cells in response to RA. In contrast, acitretin had no significant effect on intracellular retinoid concentrations in those neuroblastoma cell lines that showed little or no induction of CRABP after RA treatment. Both ATRA and 13cisRA dramatically induced the expression of CYP26A1 in SH-SY5Y cells, and treatment with R116010, but not acitretin, potentiated the RA-induced expression of a reporter gene and CYP26A1. The response of neuroblastoma cells to R116010 was consistent with inhibition of CYP26, indicating that inhibition of RA metabolism may further optimise retinoid treatment in neuroblastoma.
Collapse
Affiliation(s)
- J L Armstrong
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, University of Newcastle Upon Tyne, Newcastle Upon Tyne NE2 4HH, UK.
| | | | | | | | | | | |
Collapse
|