1
|
Bajpai M, Aviv H, Das KM. Prolonged exposure to acid and bile induces chromosome abnormalities that precede malignant transformation of benign Barrett's epithelium. Mol Cytogenet 2012. [PMID: 23194200 PMCID: PMC3564717 DOI: 10.1186/1755-8166-5-43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Abstract Barrett’s esophagus (BE) is an asymptomatic, pre-malignant condition of the esophagus that can progress to esophageal adenocarcinoma (EAC). BE arises typically in individuals with long-standing gastroesophageal reflux disease (GERD). The neoplastic progression of BE has been extensively studied histologically and defined as a metaplasia- dyplasia- carcinoma sequence. However the genetic basis of this process is poorly understood. It is conceived that preclinical models of BE may facilitate discovery of molecular markers due to ease of longitudinal sampling. Clinical markers to stratify the patients at higher risk are vital to institute appropriate therapeutic intervention since EAC has very poor prognosis. We developed a dynamic in-vitro BE carcinogenesis (BEC) model by exposing naïve Barrett’s epithelium cell line (BAR-T) to acid and bile at pH4 (B4), 5min/day for a year. The BEC model acquired malignant characteristics after chronic repeated exposure to B4 similar to the sequential progression of BE to EAC in vivo. Aim To study cytogenetic changes during progressive transformation in the BEC model. Results We observed that the BAR-T cells progressively acquired several chromosomal abnormalities in the BEC model. Evidence of chromosomal loss (-Y) rearrangements [t(10;16) and dup (11q)] and clonal selection appeared during the early stages of the BEC model. Clonal selection resulted in a stabilized monoclonal population of cells that had a changed morphology and formed colony in soft agar. BAR-T cells grown in parallel without any exposure did not show any of these abnormalities. Conclusions Prolonged acid and bile exposure induced chromosomal aberrations and clonal selection in benign BAR-T cells. Since aneuploidy preceded morphological/dysplastic changes in the BEC model, chromosomal aberrations may be an early predictor of BE progression. The [t(10;16) and dup(11q)] aberrations identified in this study harbor several genes associated with cancer and may be responsible for neoplastic behavior of cells. After further validation, in-vivo, they may be clinically useful for diagnosis of BE, progressing to dysplasia/esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Manisha Bajpai
- Division of Gastroenterology and Hepatology, Department of Medicine, UMDNJ-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA.
| | | | | |
Collapse
|
2
|
Miloševic-Djordjevic O, Grujicic D, Vaskovic Z, Marinkovic D. High Micronucleus Frequency in Peripheral Blood Lymphocytes of Untreated Cancer Patients Irrespective of Gender, Smoking and Cancer Sites. TOHOKU J EXP MED 2010; 220:115-20. [DOI: 10.1620/tjem.220.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Li L, McCormack AA, Nicholson JM, Fabarius A, Hehlmann R, Sachs RK, Duesberg PH. Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. ACTA ACUST UNITED AC 2009; 188:1-25. [PMID: 19061776 DOI: 10.1016/j.cancergencyto.2008.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 08/05/2008] [Indexed: 01/10/2023]
Abstract
The chromosomes of cancer cells are unstable, because of aneuploidy. Despite chromosomal instability, however, cancer karyotypes are individual and quasi-stable, as is evident especially from clonal chromosome copy numbers and marker chromosomes. This paradox would be resolved if the karyotypes in cancers represent chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. To test this hypothesis, we analyzed the initial and long-term karyotypes of seven clones of newly transformed human epithelial, mammary, and muscle cells. Approximately 1 in 100,000 such cells generates transformed clones at 2-3 months after introduction of retrovirus-activated cellular genes or the tumor virus SV40. These frequencies are too low for direct transformation, so we postulated that virus-activated genes initiate transformation indirectly, via specific karyotypes. Using multicolor fluorescence in situ hybridization with chromosome-specific DNA probes, we found individual clonal karyotypes that were stable for at least 34 cell generations-within limits, as follows. Depending on the karyotype, average clonal chromosome numbers were stable within +/- 3%, and chromosome-specific copy numbers were stable in 70-100% cells. At any one time, however, relative to clonal means, per-cell chromosome numbers varied +/-18% and chromosome-specific copy numbers varied +/-1 in 0-30% of cells; unstable nonclonal markers were found within karyotype-specific quotas of <1% to 20% of the total chromosome number. For two clones, karyotypic ploidies also varied. With these rates of variation, the karyotypes of transformed clones would randomize in a few generations unless selection occurs. We conclude that individual aneuploid karyotypes initiate and maintain cancers, much like new species. These cancer-causing karyotypes are in flexible equilibrium between destabilizing aneuploidy and stabilizing selection for transforming function. Karyotypes as a whole, rather than specific mutations, explain the individuality, fluidity, and phenotypic complexity of cancers.
Collapse
Affiliation(s)
- Lin Li
- Department of Molecular and Cell Biology, Donner Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Radford IR, Lobachevsky PN. Clustered DNA lesion sites as a source of mutations during human colorectal tumourigenesis. Mutat Res 2008; 646:60-8. [PMID: 18824008 DOI: 10.1016/j.mrfmmm.2008.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 08/25/2008] [Accepted: 08/28/2008] [Indexed: 12/01/2022]
Abstract
The role of gene mutations in tumourigenesis is well understood, however, the mechanism(s) by which they arise are less clear. Indeed, the common assumption that tumourigenic mutations are the result of DNA replication errors is apparently contradicted by the very low division frequency of the cells from which tumours are thought to arise (i.e. deep stem cells). As a potential solution to this paradox, we tested a model whereby clustered DNA lesion sites (CLS) (where several lesions occur within a few base pairs of each other on opposing strands) could give rise to mutations in quiescent cells. We used statistical analyses to search for sets of dinucleotide sequences (designated target sequences) that are present at and in close proximity to mutation sites in four genes associated with human colorectal tumourigenesis (adenomatosis polyposis coli (APC), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA), and tumour protein p53 (TP53)). The dinucleotides CG, AC-GT, TG, and GC were identified as target sequences in at least three of the genes analysed. Consistent with their designation as target sequences, these dinucleotides have all been identified as high probability sites of oxidative damage formation in in vitro studies. Our results strongly suggest a statistical association between the presence of multiple, clustered target sequences and mutational events. We propose that CLS are a major source of mutations during human tumourigenesis.
Collapse
|
5
|
Xu A, Smilenov LB, He P, Masumura KI, Nohmi T, Yu Z, Hei TK. New insight into intrachromosomal deletions induced by chrysotile in the gpt delta transgenic mutation assay. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:87-92. [PMID: 17366825 PMCID: PMC1797839 DOI: 10.1289/ehp.9425] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Genotoxicity is often a prerequisite to the development of malignancy. Considerable evidence has shown that exposure to asbestos fibers results in the generation of chromosomal aberrations and multilocus mutations using various in vitro approaches. However, there is less evidence to demonstrate the contribution of deletions to the mutagenicity of asbestos fibers in vivo. OBJECTIVES In the present study, we investigated the mutant fractions and the patterns induced by chrysotile fibers in gpt delta transgenic mouse primary embryo fibroblasts (MEFs) and compared the results obtained with hydrogen peroxide (H2O2) in an attempt to illustrate the role of oxyradicals in fiber mutagenesis. RESULTS Chrysotile fibers induced a dose-dependent increase in mutation yield at the redBA/gam loci in transgenic MEF cells. The number of lambda mutants losing both redBA and gam loci induced by chrysotiles at a dose of 1 microg/cm(2) increased by > 5-fold relative to nontreated controls (p < 0.005). Mutation spectra analyses showed that the ratio of lambda mutants losing the redBA/gam region induced by chrysotiles was similar to those induced by equitoxic doses of H2O2. Moreover, treatment with catalase abrogated the accumulation of y-H2AX, a biomarker of DNA double-strand breaks, induced by chrysotile fibers. CONCLUSIONS Our results provide novel information on the frequencies and types of mutations induced by asbestos fibers in the gpt delta transgenic mouse mutagenic assay, which shows great promise for evaluating fiber/particle mutagenicity in vivo.
Collapse
Affiliation(s)
- An Xu
- Center for Radiological Research, College of Physicians & Surgeons, Columbia University, New York, New York, USA
- Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
| | - Lubomir B. Smilenov
- Center for Radiological Research, College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Peng He
- Center for Radiological Research, College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Ken-ichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan
| | - Zengliang Yu
- Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
| | - Tom K. Hei
- Center for Radiological Research, College of Physicians & Surgeons, Columbia University, New York, New York, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- Address correspondence to T.K. Hei, Center for Radiological Research, Columbia University, New York, NY 10032 USA. Telephone: (212) 305-8462. Fax: (212) 305-3229. E-mail:
| |
Collapse
|
6
|
Sasaki MS, Endo S, Ejima Y, Saito I, Okamura K, Oka Y, Hoshi M. Effective dose of A-bomb radiation in Hiroshima and Nagasaki as assessed by chromosomal effectiveness of spectrum energy photons and neutrons. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2006; 45:79-91. [PMID: 16807767 DOI: 10.1007/s00411-006-0051-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/08/2006] [Indexed: 05/10/2023]
Abstract
The effective dose of combined spectrum energy neutrons and high energy spectrum gamma-rays in A-bomb survivors in Hiroshima and Nagasaki has long been a matter of discussion. The reason is largely due to the paucity of biological data for high energy photons, particularly for those with an energy of tens of MeV. To circumvent this problem, a mathematical formalism was developed for the photon energy dependency of chromosomal effectiveness by reviewing a large number of data sets published in the literature on dicentric chromosome formation in human lymphocytes. The chromosomal effectiveness was expressed by a simple multiparametric function of photon energy, which made it possible to estimate the effective dose of spectrum energy photons and differential evaluation in the field of mixed neutron and gamma-ray exposure with an internal reference radiation. The effective dose of reactor-produced spectrum energy neutrons was insensitive to the fine structure of the energy distribution and was accessible by a generalized formula applicable to the A-bomb neutrons. Energy spectra of all sources of A-bomb gamma-rays at different tissue depths were simulated by a Monte Carlo calculation applied on an ICRU sphere. Using kerma-weighted chromosomal effectiveness of A-bomb spectrum energy photons, the effective dose of A-bomb neutrons was determined, where the relative biological effectiveness (RBE) of neutrons was expressed by a dose-dependent variable RBE, RBE(gamma, D (n)), against A-bomb gamma-rays as an internal reference radiation. When the newly estimated variable RBE(gamma, D (n)) was applied to the chromosome data of A-bomb survivors in Hiroshima and Nagasaki, the city difference was completely eliminated. The revised effective dose was about 35% larger in Hiroshima, 19% larger in Nagasaki and 26% larger for the combined cohort compared with that based on a constant RBE of 10. Since the differences are significantly large, the proposed effective dose might have an impact on the magnitude of the risk estimates deduced from the A-bomb survivor cohort.
Collapse
Affiliation(s)
- M S Sasaki
- Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Kote-Jarai Z, Salmon A, Mengitsu T, Copeland M, Ardern-Jones A, Locke I, Shanley S, Summersgill B, Lu YJ, Shipley J, Eeles R. Increased level of chromosomal damage after irradiation of lymphocytes from BRCA1 mutation carriers. Br J Cancer 2006; 94:308-10. [PMID: 16404418 PMCID: PMC2361110 DOI: 10.1038/sj.bjc.6602912] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Deleterious mutations in the BRCA1 gene predispose women to an increased risk of breast and ovarian cancer. Many functional studies have suggested that BRCA1 has a role in DNA damage repair and failure in the DNA damage response pathway often leads to the accumulation of chromosomal aberrations. Here, we have compared normal lymphocytes with those heterozygous for a BRCA1 mutation. Short-term cultures were irradiated (8Gy) using a high dose rate and subsequently metaphases were analysed by 24-colour chromosome painting (M-FISH). We scored the chromosomal rearrangements in the metaphases from five BRCA1 mutation carriers and from five noncarrier control samples 6 days after irradiation. A significantly higher level of chromosomal damage was detected in the lymphocytes heterozygous for BRCA1 mutations compared with normal controls; the average number of aberrations per mitosis was 3.48 compared with 1.62 in controls (P=0.0001). This provides new evidence that heterozygous mutation carriers have a different response to DNA damage compared with noncarriers and that BRCA1 has a role in DNA damage surveillance. Our finding has implications for treatment and screening of BRCA1 mutation carriers using modalities that involve irradiation.
Collapse
Affiliation(s)
- Z Kote-Jarai
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey SM2 5NG, UK
- ranslational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey SM2 5NG, UK. E-mail:
| | - A Salmon
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey SM2 5NG, UK
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem 92000, Israel
| | - T Mengitsu
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey SM2 5NG, UK
| | - M Copeland
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey SM2 5NG, UK
| | - A Ardern-Jones
- Royal Marsden NHS Foundation Trust, Fulham Rd, London SW3 6JJ, UK
| | - I Locke
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, Fulham Rd, London SW3 6JJ, UK
| | - S Shanley
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, Fulham Rd, London SW3 6JJ, UK
| | - B Summersgill
- Molecular Cytogenetics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey SM2 5NG, UK
| | - Y-j Lu
- Molecular Cytogenetics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey SM2 5NG, UK
| | - J Shipley
- Molecular Cytogenetics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey SM2 5NG, UK
| | - R Eeles
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, Fulham Rd, London SW3 6JJ, UK
| |
Collapse
|