Zhang C, Xing X, Zhang F, Shao M, Jin S, Yang H, Wang G, Cui J, Cai L, Li W, Lu X. Low-dose radiation induces renal SOD1 expression and activity in type 1 diabetic mice.
Int J Radiat Biol 2014;
90:224-30. [PMID:
24397406 DOI:
10.3109/09553002.2014.877174]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE
Oxidative stress plays a critical role in the pathogenesis of diabetic nephropathy (DN). As an antioxidant, superoxide dismutase (SOD)-1 deficiency exacerbates but SOD1 supplementation prevents diabetes-induced renal damage. Previously, we have demonstrated that repetitive exposure to low-dose radiation (LDR) at 25 mGy significantly prevents DN. Whether this prevention is related to SOD1 expression and activity remains unknown. The aim of the present study was to explore the effects of different methods of LDR treatment on SOD1 expression and activity in the kidneys of diabetic mice.
MATERIALS AND METHODS
C57BL/6J mice were induced with type 1 diabetes using streptozotocin (STZ). Diabetic mice were irradiated with whole-body X-rays at either a single dose of 25 mGy or 75 mGy, or three doses of 25 mGy and then sacrificed at different times. Body weight, blood glucose level, and renal SOD1 expression and activity were measured.
RESULTS
LDR had no impact on the body weights or blood glucose levels of the mice in either the normal or diabetic groups. A single exposure of LDR at 25 mGy did not preserve renal SOD1 expression and activity in diabetic mice, but a single exposure of LDR at 75 mGy or three exposures of LDR at 25 mGy could preserve them.
CONCLUSION
The stimulation of renal SOD1 expression and activity by a single or cumulative LDR of 75 mGy may be one of the preventive mechanisms of DN observed in the previous study.
Collapse