1
|
Bai J, Wang S, Xu F, Dong M, Wang J, Sun X, Xiao G. L. reuteri JMR-01 adjuvant 12C 6+ irradiation exerts anti-colon carcinoma effects by modulating the gut microbiota in mice. Int J Radiat Biol 2023; 99:779-790. [PMID: 36731457 DOI: 10.1080/09553002.2023.2142979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Probiotics such as Lactobacillus could modulate the intestinal microbiota and have been considered as an effective strategy for ameliorating colon carcinoma. Nevertheless, its efficiency remains the biggest challenge. METHODS We investigated the therapeutic efficacy of Lactobacillus reuteri JMR-01 adjuvant 12C6+ irradiation on CT-26 syngeneic mouse models. Meanwhile, intestinal flora and innate immunity were examined to outline mechanisms. RESULTS Anti-proliferation effect of live probiotic combined with inactivated probiotic JMR-01 (LP + IP) on CT-26 reached a maximum of 39.55% among other experiment groups at 24 h when the ratio of cell to CFU was 1:1 in vitro. These activities have been fully validated in vivo, tumor-bearing mice treated by 12C6+ irradiation combining with living and inactivated probiotics JMR-01 (IR + LP + IP) for 50-day held the highest survival rate (71.4%) and complete remission rate (14.3%). We also demonstrated significant fluctuation in gut microbiota, including the decreased abundance of Bacteroides fragilis and Clostridium perfringens related to tumorigenesis and development, and the increased abundance of Lactobacillus and Bifidobacterium closely associated with health restoration in fecal of mice treated with JMR-01 LP + IP adjuvant 12C6+ irradiation (IR + LP + IP). Similarly, the decreasing nitroreductase activities and increasing short chain fatty acids (SCFAs) concentrations were observed in IR + LP + IP group compared with tumor control group, which further confirmed the changes of gut microbiota. Additionally, we found that the strongest stimulation index of splenocyte (2.47) and the phagocytosis index peritoneal macrophage (3.68) were achieved by LP + IP compared with single live JMR-01 (LP) and inactivated JMR-01 (IP). CONCLUSIONS JMR-01 LP + IP adjuvant 12C6+ irradiation could mitigate cancer progression by modulating innate immunity as well as intestinal flora.
Collapse
Affiliation(s)
- Jin Bai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China.,College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Shuyang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China.,College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, PR China.,Institute of Biology, Gansu Academy of Sciences, Lanzhou, PR China
| | - Fuqiang Xu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China.,College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Miaoyin Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Junkai Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Xisi Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China.,College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guoqing Xiao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, PR China.,College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
2
|
Durand M, Chateau A, Jubréaux J, Devy J, Paquot H, Laurent G, Bazzi R, Roux S, Richet N, Reinhard-Ruch A, Chastagner P, Pinel S. Radiosensitization with Gadolinium Chelate-Coated Gold Nanoparticles Prevents Aggressiveness and Invasiveness in Glioblastoma. Int J Nanomedicine 2023; 18:243-261. [PMID: 36660336 PMCID: PMC9844821 DOI: 10.2147/ijn.s375918] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/23/2022] [Indexed: 01/15/2023] Open
Abstract
Purpose This study aimed to evaluate the radiosensitizing potential of Au@DTDTPA(Gd) nanoparticles when combined with conventional external X-ray irradiation (RT) to treat GBM. Methods Complementary biological models based on U87 spheroids including conventional 3D invasion assay, organotypic brain slice cultures, chronic cranial window model were implemented to investigate the impact of RT treatments (10 Gy single dose; 5×2 Gy or 2×5 Gy) combined with Au@DTDTPA(Gd) nanoparticles on tumor progression. The main tumor mass and its infiltrative area were analyzed. This work focused on the invading cancer cells after irradiation and their viability, aggressiveness, and recurrence potential were assessed using mitotic catastrophe quantification, MMP secretion analysis and neurosphere assays, respectively. Results In vitro clonogenic assays showed that Au@DTDTPA(Gd) nanoparticles exerted a radiosensitizing effect on U87 cells, and in vivo experiments suggested a benefit of the combined treatment "RT 2×5 Gy + Au@DTDTPA(Gd)" compared to RT alone. Invasion assays revealed that invasion distance tended to increase after irradiation alone, while the combined treatments were able to significantly reduce tumor invasion. Monitoring of U87-GFP tumor progression using organotypic cultures or intracerebral grafts confirmed the anti-invasive effect of Au@DTDTPA(Gd) on irradiated spheroids. Most importantly, the combination of Au@DTDTPA(Gd) with irradiation drastically reduced the number, the viability and the aggressiveness of tumor cells able to escape from U87 spheroids. Notably, the combined treatments significantly reduced the proportion of escaped cells with stem-like features that could cause recurrence. Conclusion Combining Au@DTDTPA(Gd) nanoparticles and X-ray radiotherapy appears as an attractive therapeutic strategy to decrease number, viability and aggressiveness of tumor cells that escape and can invade the surrounding brain parenchyma. Hence, Au@DTDTPA(Gd)-enhanced radiotherapy opens up interesting perspectives for glioblastoma treatment.
Collapse
Affiliation(s)
- Maxime Durand
- Université de Lorraine, CNRS, CRAN, Nancy, F-54000, France
| | - Alicia Chateau
- Université de Lorraine, CNRS, CRAN, Nancy, F-54000, France
| | | | - Jérôme Devy
- Université de Reims-Champagne-Ardennes, UMR CNRS/URCA 7369, MEDyC, Reims, F-51100, France
| | - Héna Paquot
- Université de Lorraine, CNRS, CRAN, Nancy, F-54000, France
| | - Gautier Laurent
- Université Bourgogne Franche-Comté, UMR 6213 CNRS-UBFC, UTINAM, Besançon, F-25000, France
| | - Rana Bazzi
- Université Bourgogne Franche-Comté, UMR 6213 CNRS-UBFC, UTINAM, Besançon, F-25000, France
| | - Stéphane Roux
- Université Bourgogne Franche-Comté, UMR 6213 CNRS-UBFC, UTINAM, Besançon, F-25000, France
| | - Nicolas Richet
- Université de Reims-Champagne-Ardennes, Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE Mobicyte, Reims, F-51100, France
| | | | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, Nancy, F-54000, France,CHRU de Nancy, Hôpital d’enfants - Brabois, Vandoeuvre-lès-Nancy, F-54500, France
| | - Sophie Pinel
- Université de Lorraine, CNRS, CRAN, Nancy, F-54000, France,Correspondence: Sophie Pinel, Email
| |
Collapse
|
3
|
Oishi T, Koizumi S, Kurozumi K. Molecular Mechanisms and Clinical Challenges of Glioma Invasion. Brain Sci 2022; 12:brainsci12020291. [PMID: 35204054 PMCID: PMC8870089 DOI: 10.3390/brainsci12020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Glioma is the most common primary brain tumor, and its prognosis is poor. Glioma cells are highly invasive to the brain parenchyma. It is difficult to achieve complete resection due to the nature of the brain tissue, and tumors that invade the parenchyma often recur. The invasiveness of tumor cells has been studied from various aspects, and the related molecular mechanisms are gradually becoming clear. Cell adhesion factors and extracellular matrix factors have a strong influence on glioma invasion. The molecular mechanisms that enhance the invasiveness of glioma stem cells, which have been investigated in recent years, have also been clarified. In addition, it has been discussed from both basic and clinical perspectives that current therapies can alter the invasiveness of tumors, and there is a need to develop therapeutic approaches to glioma invasion in the future. In this review, we will summarize the factors that influence the invasiveness of glioma based on the environment of tumor cells and tissues, and describe the impact of the treatment of glioma on invasion in terms of molecular biology, and the novel therapies for invasion that are currently being developed.
Collapse
|
4
|
IGF-I and Hyaluronic Acid Mitigate the Negative Effect of Irradiation on Human Skin Keratinocytes. Cancers (Basel) 2022; 14:cancers14030588. [PMID: 35158856 PMCID: PMC8833477 DOI: 10.3390/cancers14030588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Patients undergoing radiation therapy for the treatment of various types of cancer often experience side effects such as radiation dermatitis. A gold standard treatment is still lacking. The objective of the present study was to find novel therapeutic strategies for the regeneration and repair of damaged skin areas after irradiation. An in vitro 2D and 3D primary keratinocyte model was used to test the effect of insulin-like growth factor I (IGF-I), keratinocyte growth factor (KGF), platelet lysate (PL), hyaluronic acid (HA), and adipose-derived stem cell (ADSC) conditioned medium on the functional abilities (viability, migration) and the gene expression of irradiated keratinocytes. Hyaluronic acid and IGF-I effectively reduced the irradiation damage of primary keratinocytes by stimulating viability and migration and reducing cell apoptosis and necrosis. These findings indicate that the negative effects of irradiation on keratinocytes located in the patient’s skin can be counterbalanced with HA and IGF-I treatment. Abstract Ionizing radiation has become an integral part of modern cancer therapy regimens. Various side effects, such as radiation dermatitis, affect patients in acute and chronic forms and decrease therapy compliance significantly. In this study, primary keratinocytes were irradiated in a 2-dimensional (2D) culture as well as on a 3-dimensional (3D) collagen-elastin matrix with doses of 2 and 5 Gy. The effect of different concentrations of IGF-I, KGF, platelet lysate (PL), high and low molecular weight hyaluronic acid (H-HA, L-HA), and adipose-derived stem cell (ADSC) conditioned medium was analyzed in respect to cell viability (WST-8), wound closure (migration), and the gene expression (quantitative real-time PCR) of 2D cultures. The 3D culture was evaluated by WST-8. A mixture of H-HA and L-HA, as well as IGF-I, could significantly stimulate the keratinocyte viability and migration which were severely reduced by irradiation. The MKI67and IL6 gene expression of irradiated keratinocytes was significantly higher after H-HA/L-HA treatment. The stimulating effects of H-HA/L-HA and IGF-I were able to be confirmed in 3D culture. A positive influence on cell viability, migration, and gene expression was achieved after the treatment with H-L-HA and IGF-I. These results open the possibility of a novel therapeutic method for both the prevention and the treatment of radiation dermatitis.
Collapse
|
5
|
Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines 2021; 9:biomedicines9091102. [PMID: 34572287 PMCID: PMC8465203 DOI: 10.3390/biomedicines9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.
Collapse
|
6
|
Cui Y, Cole S, Pepper J, Otero JJ, Winter JO. Hyaluronic acid induces ROCK-dependent amoeboid migration in glioblastoma cells. Biomater Sci 2020; 8:4821-4831. [PMID: 32749402 PMCID: PMC7473492 DOI: 10.1039/d0bm00505c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and deadly adult brain tumor, primarily because of its high infiltrative capacity and development of resistance to therapy. Although GBM cells are typically believed to migrate via mesenchymal (e.g., fibroblast-like) migration modes, amoeboid (e.g., leucocyte-like) migration modes have been identified and may constitute a salvage pathway. However, the mesenchymal to amoeboid transition (MAT) process in GB is not well characterized, most likely because most culture models induce MAT via pharmacological or genetic inhibition conditions that are far from physiological. In this study, we examined the ability of hyaluronic acid (HA) content in three-dimensional collagen (Col) hydrogels to induce MAT in U87 GBM cells. HA and Col are naturally-occurring components of the brain extracellular matrix (ECM). In pure Col gels, U87 cells displayed primarily mesenchymal behaviors, including elongated cell morphology, clustered actin and integrin expression, and crawling migration behaviors. Whereas an increasing population of cells displaying amoeboid behaviors, including rounded morphology, cortical actin expression, low/no integrin expression, and squeezing or gliding motility, were observed with increasing HA content (0.1-0.2 wt% in Col). Consistent with amoeboid migration, these behaviors were abrogated by ROCK inhibition with the non-specific small molecule inhibitor Y27632. Toward identification of histological MAT classification criteria, we also examined the correlation between cell and nuclear aspect ratio (AR) in Col and Col-HA gels, finding that nuclear AR has a small variance and is not correlated to cell AR in HA-rich gels. These results suggest that HA may regulate GBM cell motility in a ROCK-dependent manner.
Collapse
Affiliation(s)
- Yixiao Cui
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
7
|
McAbee JH, Rath BH, Valdez K, Young DL, Wu X, Shankavaram UT, Camphausen K, Tofilon PJ. Radiation Drives the Evolution of Orthotopic Xenografts Initiated from Glioblastoma Stem-like Cells. Cancer Res 2019; 79:6032-6043. [PMID: 31615806 PMCID: PMC6891212 DOI: 10.1158/0008-5472.can-19-2452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/10/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
A consequence of the intratumor heterogeneity (ITH) of glioblastoma (GBM) is the susceptibility to treatment-driven evolution. To determine the potential of radiotherapy to influence GBM evolution, we used orthotopic xenografts initiated from CD133+ GBM stem-like cells (GSC). Toward this end, orthotopic xenografts grown in nude mice were exposed to a fractionated radiation protocol, which resulted in a significant increase in animal survival. Brain tumors from control and irradiated mice were then collected at morbidity and compared in terms of growth pattern, clonal diversity, and genomic architecture. In mice that received fractionated radiation, tumors were less invasive, with more clearly demarcated borders and tumor core hypercellularity as compared with controls, suggesting a fundamental change in tumor biology. Viral integration site analysis indicated a reduction in clonal diversity in the irradiated tumors, implying a decrease in ITH. Changes in clonal diversity were not detected after irradiation of GSCs in vitro, suggesting that the radiation-induced reduction in ITH was dependent on the brain microenvironment. Whole-exome sequencing revealed differences in mutation patterns between control and irradiated tumors, which included modifications in the presence and clonality of driver mutations associated with GBM. Moreover, changes in the distribution of mutations as a function of subpopulation size between control and irradiated tumors were consistent with subclone expansion and contraction, that is, subpopulation evolution. Taken together, these results indicate that radiation drives the evolution of the GSC-initiated orthotopic xenografts and suggest that radiation-driven evolution may have therapeutic implications for recurrent GBM. SIGNIFICANCE: Radiation drives the evolution of glioblastoma orthotopic xenografts; when translated to the clinic, this may have therapeutic implications for recurrent tumors.
Collapse
Affiliation(s)
- Joseph H McAbee
- Radiation Oncology Branch, NCI, Bethesda, Maryland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | | | | | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | | | | |
Collapse
|
8
|
Tahmasebi-Birgani MJ, Teimoori A, Ghadiri A, Mansoury-Asl H, Danyaei A, Khanbabaei H. Fractionated radiotherapy might induce epithelial-mesenchymal transition and radioresistance in a cellular context manner. J Cell Biochem 2019; 120:8601-8610. [PMID: 30485518 DOI: 10.1002/jcb.28148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
Despite the fact that radiotherapy is a main therapeutic modality in cancer treatment, recent evidence suggests that fractionated radiotherapy (FR) might confer radioresistance through epithelial-mesenchymal transition (EMT). Nevertheless, the effects of FR on EMT phenotype and the potential link between EMT induction and radioresistance development yet to be clarified. The aim of this study was to assess whether FR could promote EMT, and to elucidate if induction of EMT contributes to the acquisition of radioresistance. To this end, two human cancer cell lines (A549 and HT-29) were irradiated (2 Gy/day) and analyzed using wound healing, transwell migration and invasion assays, real-time polymerase chain reaction (for E-cadherin, N-cadherin, Vimentin, CD44, CD133, Snail, and Twist), clonogenic assay, Annexin V/PI, and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Irradiation of A549 (for 5 or 10 consecutive days) resulted in morphological changes including elongation of cytoplasm and nuclei and pleomorphic nuclei. Also, irradiation-enhanced migratory and invasive potential of A549. These phenotypic changes were in agreement with decreased expression of the epithelial marker (E-cadherin), enhanced expression of mesenchymal markers (N-cadherin, Vimentin, Snail, and Twist) and increased stemness factors (CD44 and CD133). Moreover, induction of EMT phenotype was accompanied with enhanced radioresistance and proliferation of irradiated A549. However, FR (for 5 consecutive days) did not increase HT-29 motility. Furthermore, molecular alterations did not resemble EMT phenotype (downregulation of E-cadherin, Vimentin, ALDH, CD44, CD133, and Snail). Eventually, FR led to enhanced radiosensitivity and decreased proliferation of HT-29. Altogether, our findings suggest that FR might induce EMT and confer radioresistance in a cell context-dependent manner.
Collapse
Affiliation(s)
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Ata Ghadiri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Halime Mansoury-Asl
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Danyaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hashem Khanbabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Wank M, Schilling D, Schmid TE, Meyer B, Gempt J, Barz M, Schlegel J, Liesche F, Kessel KA, Wiestler B, Bette S, Zimmer C, Combs SE. Human Glioma Migration and Infiltration Properties as a Target for Personalized Radiation Medicine. Cancers (Basel) 2018; 10:cancers10110456. [PMID: 30463322 PMCID: PMC6266328 DOI: 10.3390/cancers10110456] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 01/28/2023] Open
Abstract
Gliomas are primary brain tumors that present the majority of malignant adult brain tumors. Gliomas are subdivided into low- and high-grade tumors. Despite extensive research in recent years, the prognosis of malignant glioma patients remains poor. This is caused by naturally highly infiltrative capacities as well as high levels of radio- and chemoresistance. Additionally, it was shown that low linear energy transfer (LET) irradiation enhances migration and invasion of several glioma entities which might counteract today’s treatment concepts. However, this finding is discussed controversially. In the era of personalized medicine, this controversial data might be attributed to the patient-specific heterogeneity that ultimately could be used for treatment. Thus, current developments in glioma therapy should be seen in the context of intrinsic and radiation-enhanced migration and invasion. Due to the natural heterogeneity of glioma cells and different radiation responses, a personalized radiation treatment concept is suggested and alternative radiation concepts are discussed.
Collapse
Affiliation(s)
- Michaela Wank
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany.
| | - Daniela Schilling
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Thomas E Schmid
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Jens Gempt
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Melanie Barz
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Jürgen Schlegel
- Department of Neuropathology, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Friederike Liesche
- Department of Neuropathology, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Kerstin A Kessel
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany.
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Stefanie Bette
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Stephanie E Combs
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany.
| |
Collapse
|
10
|
Nguemgo Kouam P, Rezniczek GA, Kochanneck A, Priesch-Grzeszkowiak B, Hero T, Adamietz IA, Bühler H. Robo1 and vimentin regulate radiation-induced motility of human glioblastoma cells. PLoS One 2018; 13:e0198508. [PMID: 29864155 PMCID: PMC5986140 DOI: 10.1371/journal.pone.0198508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/21/2018] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is a primary brain tumor with a poor prognosis despite of many treatment regimens. Radiotherapy significantly prolongs patient survival and remains the most common treatment. Slit2 and Robo1 are evolutionarily conserved proteins involved in axon guidance, migration, and branching of neuronal cells. New studies have shown that Slit2 and Robo1 could play important roles in leukocyte chemotaxis and glioblastoma cell migration. Therefore, we investigated whether the Slit2/Robo1 complex has an impact on the motility of glioblastoma cells and whether irradiation with therapeutic doses modulates this effect. Our results indicate that photon irradiation increases the migration of glioblastoma cells in vitro. qPCR and immunoblotting experiments in two different glioblastoma cell lines (U-373 MG and U-87 MG) with different malignancy revealed that both Slit2 and Robo1 are significantly lower expressed in the cell populations with the highest motility and that the expression was reduced after irradiation. Overexpression of Robo1 significantly decreased the motility of glioblastoma cells and inhibited the accelerated migration of wild-type cells after irradiation. Immunoblotting analysis of migration-associated proteins (fascin and focal adhesion kinase) and of the epithelial-mesenchymal-transition-related protein vimentin showed that irradiation affected the migration of glioblastoma cells by increasing vimentin expression, which can be reversed by the overexpression of Slit2 and Robo1. Our findings suggest that Robo1 expression might counteract migration and also radiation-induced migration of glioblastoma cells, a process that might be connected to mesenchymal-epithelial transition.
Collapse
Affiliation(s)
- Pascaline Nguemgo Kouam
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Günther A. Rezniczek
- Department of Obstetrics and Gynecology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Anja Kochanneck
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Bettina Priesch-Grzeszkowiak
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Thomas Hero
- Department of Radiotherapy and Radio-Oncology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Irenäus A. Adamietz
- Department of Radiotherapy and Radio-Oncology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Helmut Bühler
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| |
Collapse
|
11
|
Moncharmont C, Guy JB, Wozny AS, Gilormini M, Battiston-Montagne P, Ardail D, Beuve M, Alphonse G, Simoëns X, Rancoule C, Rodriguez-Lafrasse C, Magné N. Carbon ion irradiation withstands cancer stem cells' migration/invasion process in Head and Neck Squamous Cell Carcinoma (HNSCC). Oncotarget 2018; 7:47738-47749. [PMID: 27374096 PMCID: PMC5216975 DOI: 10.18632/oncotarget.10281] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/28/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer Stem Cells (CSCs) in Head and Neck Squamous Cell Carcinoma (HNSCC) have extremely aggressive profile (high migratory and invasive potential). These characteristics can explain their resistance to conventional treatment. Efficacy of photon and carbon ion irradiation with addition of cetuximab (5 nM) is studied on clonogenic death, migration and invasion of two HNSCC populations: SQ20B and SQ20B/CSCs. SQ20B express E-cadherin and overexpress EGFR while SQ20B/CSCs express N-cadherin and low EGFR. Cetuximab strongly inhibits SQ20B proliferation but has no effect on SQ20B/CSCs. 2 Gy photon irradiation enhances migration and invasiveness in both populations (p < 0.05), while cetuximab only stops SQ20B migration (p < 0.005). Carbon irradiation significantly inhibits invasion in both populations (p < 0.05), and the association with cetuximab significantly inhibits invasion in both populations (p < 0.005). These results highlight CSCs characteristics: EGFRLow, cetuximab-resistant, and highly migratory. Carbon ion irradiation appears to be a very promising therapeutic modality counteracting migration/invasion process in both parental cells and CSCs in contrast to photon irradiation.
Collapse
Affiliation(s)
- Coralie Moncharmont
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Département de Radiothérapie, Institut de Cancérologie de la Loire - Lucien Neuwirth, St Priest en Jarez, 42270, France
| | - Jean-Baptiste Guy
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Département de Radiothérapie, Institut de Cancérologie de la Loire - Lucien Neuwirth, St Priest en Jarez, 42270, France
| | - Anne-Sophie Wozny
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Hospices Civils de Lyon, Lyon, 69229, France
| | - Marion Gilormini
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France
| | - Priscilla Battiston-Montagne
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France
| | - Dominique Ardail
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Hospices Civils de Lyon, Lyon, 69229, France
| | - Michael Beuve
- Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France
| | - Gersende Alphonse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Hospices Civils de Lyon, Lyon, 69229, France
| | - Xavier Simoëns
- Département de Pharmacologie Clinique et d'Innovation, Institut de Cancérologie de la Loire - Lucien Neuwirth, St Priest en Jarez, 42270, France
| | - Chloé Rancoule
- Département de Radiothérapie, Institut de Cancérologie de la Loire - Lucien Neuwirth, St Priest en Jarez, 42270, France
| | - Claire Rodriguez-Lafrasse
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Hospices Civils de Lyon, Lyon, 69229, France
| | - Nicolas Magné
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, 69921, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, 69622, France.,Département de Radiothérapie, Institut de Cancérologie de la Loire - Lucien Neuwirth, St Priest en Jarez, 42270, France
| |
Collapse
|
12
|
AEG-1 knockdown in colon cancer cell lines inhibits radiation-enhanced migration and invasion in vitro and in a novel in vivo zebrafish model. Oncotarget 2018; 7:81634-81644. [PMID: 27835571 PMCID: PMC5348418 DOI: 10.18632/oncotarget.13155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/13/2016] [Indexed: 12/17/2022] Open
Abstract
Background Radiotherapy is a well-established anti-cancer treatment. Although radiotherapy has been shown to significantly decrease the local relapse in rectal cancer patients, the rate of distant metastasis is still very high. The aim of this study was to evaluate whether AEG-1 is involved in radiation-enhanced migration and invasion in vitro and in a novel in vivo zebrafish model. Results Migration and invasion were decreased in all the AEG-1 knockdown cell lines. Furthermore, we observed that radiation enhanced migration and invasion, while AEG-1 knockdown abolished this effect. The results from the zebrafish embryo model confirmed the results obtained in vitro. MMP-9 secretion and expression were decreased in AEG-1 knockdown cells. Materials and Methods We evaluated the involvement of AEG-1 in migration and invasion and, radiation-enhanced migration and invasion by Boyden chamber assay in three colon cancer cell lines and respective stable AEG-1 knockdown cell lines. Furthermore, we injected those cells into zebrafish embryos and evaluated the amount of disseminated cells into the tail. Conclusion AEG-1 knockdown inhibits migration and invasion, as well as radiation-enhanced invasion both in vitro and in vivo. We speculate that this is done via the downregulation of the intrinsic or radiation-enhanced MMP-9 expression by AEG-1 in the cancer cells. This study also shows, for the first time, that the zebrafish is a great model to study the early events in radiation-enhanced invasion.
Collapse
|
13
|
Chen Z, Cai X, Chang L, Xia Y, Wang L, Hou Y, Li L, Pan D, Li F, Liu S, Xiong W, Li W. LINC00152 is a potential biomarker involved in the modulation of biological characteristics of residual colorectal cancer cells following chemoradiotherapy. Oncol Lett 2018. [PMID: 29541183 PMCID: PMC5835918 DOI: 10.3892/ol.2018.7833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Concurrent radiotherapy and chemotherapy is a widely used, comprehensive treatment for rectal cancer. By studying the impact of concurrent chemoradiotherapy on the invasion and migration of colorectal cancer (CRC) cells and researching the associated molecular mechanisms, the present study aimed to provide a novel method to improve the therapeutic effect of this treatment against CRC. Human HCT116 and HT29 CRC cells were simultaneously treated with 4 Gy of 6 MV X-rays and 10 µmol/l 5-fluorouracil to establish a residual cell model. Transwell migration and invasion experiments were used to analyse the invasion and migration of the cells. The expression of long non-coding (lnc)RNAs was detected using a gene chip, and reverse transcription-quantitative polymerase chain reaction analysis was used to determine lncRNA expression levels. Specific small interfering RNAs were transfected into HCT116 residual cells to silence the expression of the identified key genes. The migration and invasion of residual CRC cells were demonstrated to be significantly increased compared with the original cells. Pvt1 oncogene, long-chain non-protein-coding RNA 152 (LINC00152), and MIR22 host gene were selected as potential targets. However, the migration and invasion of residual HCT116 cancer cells were only significantly decreased following silencing of LINC00152 expression. LINC00152 may therefore be a potential biomarker involved in modulation of the biological characteristics of residual CRC cells following chemoradiotherapy.
Collapse
Affiliation(s)
- Zhengting Chen
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| | - Xinyi Cai
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| | - Li Chang
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| | - Yaoxiong Xia
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| | - Li Wang
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| | - Yu Hou
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| | - Lan Li
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| | - Dingguo Pan
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| | - Furong Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| | - Shan Liu
- Department of Combined Traditional Chinese and Western Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| | - Wei Xiong
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| | - Wenhui Li
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, P.R. China
| |
Collapse
|
14
|
Abstract
Carbon ion therapy is a promising evolving modality in radiotherapy to treat tumors that are radioresistant against photon treatments. As carbon ions are more effective in normal and tumor tissue, the relative biological effectiveness (RBE) has to be calculated by bio-mathematical models and has to be considered in the dose prescription. This review (i) introduces the concept of the RBE and its most important determinants, (ii) describes the physical and biological causes of the increased RBE for carbon ions, (iii) summarizes available RBE measurements in vitro and in vivo, and (iv) describes the concepts of the clinically applied RBE models (mixed beam model, local effect model, and microdosimetric-kinetic model), and (v) the way they are introduced into clinical application as well as (vi) their status of experimental and clinical validation, and finally (vii) summarizes the current status of the use of the RBE concept in carbon ion therapy and points out clinically relevant conclusions as well as open questions. The RBE concept has proven to be a valuable concept for dose prescription in carbon ion radiotherapy, however, different centers use different RBE models and therefore care has to be taken when transferring results from one center to another. Experimental studies significantly improve the understanding of the dependencies and limitations of RBE models in clinical application. For the future, further studies investigating quantitatively the differential effects between normal tissues and tumors are needed accompanied by clinical studies on effectiveness and toxicity.
Collapse
Affiliation(s)
- Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | |
Collapse
|
15
|
Young AGH, Bennewith KL. Ionizing Radiation Enhances Breast Tumor Cell Migration In Vitro. Radiat Res 2017; 188:381-391. [PMID: 28763286 DOI: 10.1667/rr14738.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In preclinical studies, several tumor cell lines have demonstrated an epithelial-to-mesenchymal (EMT)-dependent enhancement in migration when exposed to ionizing radiation at doses of 10 Gy or higher. The goal of this study was to determine whether a lower dose (2.3 Gy) of radiation enhances breast tumor cell migration, and to elucidate the potential contribution of EMT and pro-migratory secreted factors in radiation-induced tumor cell migration. Three human breast cancer cell lines were irradiated and imaged in real-time over 72 h to quantify changes in single cell migration, chemotactic migration and invasion. EMT markers were assessed and conditioned media from irradiated cells was used to determine whether cellular migration was influenced by secreted factors. We observed that a 2.3 Gy dose of radiation did not induce EMT in epithelial-like MCF-7 cells and did not increase the ability of MCF-7 cells or highly motile MDA-MB-231 LM2-4 cells to migrate. In addition, a 2.3 Gy dose significantly increased MDA-MB-231 migration, as detected by single cell tracking and transwell migration assays, but did not increase invasion of MDA-MB-231 cells through reconstituted basement membrane. Cells from all three cell lines migrated further from their point of origin after irradiation, suggesting the cells may be responding to soluble factors produced by other irradiated cells. Consistently, conditioned media derived from 2.3 Gy irradiated MDA-MB-231 cells contained increased levels of several pro-migratory chemokines, and conditioned media from irradiated cells enhanced the migration of nonirradiated MDA-MB-231 cells. These findings indicate that 2.3 Gy dose of radiation is sufficient to increase migration of MDA-MB-231 cells and to alter the single cell migration behavior of three human breast cancer cell lines. Our data suggest the involvement of soluble factors released by 2.3 Gy irradiated cells, and support further in vitro and in vivo studies to identify potential therapeutic targets to prevent tumor cell migration after irradiation.
Collapse
Affiliation(s)
- Ada G H Young
- a Integrative Oncology, BC Cancer Agency, Vancouver, Canada.,b Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Kevin L Bennewith
- a Integrative Oncology, BC Cancer Agency, Vancouver, Canada.,b Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Yamauchi Y, Safi S, Orschiedt L, Gardyan A, Brons S, Rieber J, Nicolay NH, Huber PE, Eichhorn M, Dienemann H, Herth FJF, Weber KJ, Debus J, Hoffmann H, Rieken S. Low-dose photon irradiation induces invasiveness through the SDF-1α/CXCR4 pathway in malignant mesothelioma cells. Oncotarget 2017; 8:68001-68011. [PMID: 28978091 PMCID: PMC5620231 DOI: 10.18632/oncotarget.19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 06/10/2017] [Indexed: 11/28/2022] Open
Abstract
Background Low-dose photon irradiation has repeatedly been suspected to increase a risk of promoting local recurrence of disease or even systemic dissemination. The purpose of this study was to investigate the motility of malignant pleural mesothelioma (MPM) cell lines after low-doses of photon irradiation and to elucidate the mechanism of the detected phenotype. Methods H28 and H226 MPM cells were examined in clonogenic survival experiments and migration assays with and without various doses of photon and carbon ion irradiation. C-X-C chemokine receptor type 4 (CXCR4), SDF-1α, β1 integrin, α3 integrin, and α5 integrin expressions were analyzed by quantitative FACS analysis, ELISA and western blots. Apoptosis was assessed via Annexin-V-staining. Results The migration of MPM cells was stimulated by both fetal bovine serum and by stromal cell-derived factor 1α (SDF-1α). Low doses of photon irradiation (1 Gy and 2 Gy) suppressed clonogenicity, but promoted migration of both H28 and H226 cells through the SDF-1α/CXCR4 pathway. Hypermigration was inhibited by the administration of CXCR4 antagonist, AMD3100. In contrast, corresponding doses of carbon ion irradiation (0.3 Gy and 1 Gy) suppressed clonogenicity, but did not promote MPM cell migration. Conclusion Our findings suggest that the co-administration of photon irradiation and the CXCR4-antagonist AMD3100 or the use of carbon ions instead of photons may be possible solutions to reduce the risk of locoregional tumor recurrence after radiotherapy for MPM.
Collapse
Affiliation(s)
- Yoshikane Yamauchi
- Department of Thoracic Surgery, Thorax Clinic, Heidelberg University, Heidelberg, Germany
| | - Seyer Safi
- Department of Thoracic Surgery, Thorax Clinic, Heidelberg University, Heidelberg, Germany
| | - Lena Orschiedt
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Adriane Gardyan
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Juliane Rieber
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Martin Eichhorn
- Department of Thoracic Surgery, Thorax Clinic, Heidelberg University, Heidelberg, Germany
| | - Hendrik Dienemann
- Department of Thoracic Surgery, Thorax Clinic, Heidelberg University, Heidelberg, Germany
| | - Felix J F Herth
- Pneumology and Critical Care Medicine, Thorax Clinic, Heidelberg University, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRCH), Heidelberg, Germany, Member of the German Center for Lung Research (DZL)
| | - Klaus-Josef Weber
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Hans Hoffmann
- Department of Thoracic Surgery, Thorax Clinic, Heidelberg University, Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Heidelberg Ion Treatment Facility (HIT), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
17
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|
18
|
Panzetta V, De Menna M, Musella I, Pugliese M, Quarto M, Netti PA, Fusco S. X-rays effects on cytoskeleton mechanics of healthy and tumor cells. Cytoskeleton (Hoboken) 2016; 74:40-52. [DOI: 10.1002/cm.21334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Valeria Panzetta
- Center for Advanced Biomaterials for Health Care@CRIB - Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 Napoli 80125 Italy
| | - Marta De Menna
- Department of Experimental and Clinic Medicine; University of Catanzaro Magna Graecia; Catanzaro Italy
| | - Ida Musella
- Center for Advanced Biomaterials for Health Care@CRIB - Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 Napoli 80125 Italy
| | - Mariagabriella Pugliese
- Dipartimento di Fisica; Università Federico II and INFN-Sezione di Napoli; Monte S. Angelo, Via Cintia Napoli 80126 Italy
| | - Maria Quarto
- Dipartimento di Fisica; Università Federico II and INFN-Sezione di Napoli; Monte S. Angelo, Via Cintia Napoli 80126 Italy
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Health Care@CRIB - Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 Napoli 80125 Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II; P.le Tecchio 80 Napoli 80125 Italy
| | - Sabato Fusco
- Center for Advanced Biomaterials for Health Care@CRIB - Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci n. 53 Napoli 80125 Italy
| |
Collapse
|
19
|
Shimokawa T, Ma L, Ando K, Sato K, Imai T. The Future of Combining Carbon-Ion Radiotherapy with Immunotherapy: Evidence and Progress in Mouse Models. Int J Part Ther 2016; 3:61-70. [PMID: 31772976 DOI: 10.14338/ijpt-15-00023.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/18/2016] [Indexed: 12/21/2022] Open
Abstract
After >60 years since the first treatment, particle radiation therapy (RT) is now used to treat various types of tumors worldwide. Particle RT results in favorable outcomes, especially in local control, because of its biological properties and excellent dose distribution. However, similar to other types of cancer treatment, metastasis control is a crucial issue. Notably, immunotherapy is used for cancer treatment with high risk for recurrence and/or metastasis. These 2 cancer therapies could be ideal, complementary partners for noninvasive cancer treatment. In this review, we will focus on preclinical studies combining particle RT, especially carbon ion RT, and immunotherapy.
Collapse
Affiliation(s)
- Takashi Shimokawa
- Cancer Metastasis Research Team, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan.,Cancer Metastasis Research Team, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan
| | - Liqiu Ma
- Cancer Metastasis Research Team, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan.,Cancer Metastasis Research Team, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan
| | - Ken Ando
- Cancer Metastasis Research Team, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan.,Cancer Metastasis Research Team, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan
| | - Katsutoshi Sato
- Cancer Metastasis Research Team, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan.,Cancer Metastasis Research Team, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan
| | - Takashi Imai
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan
| |
Collapse
|
20
|
Walenta S, Mueller-Klieser W. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models. Front Oncol 2016; 6:30. [PMID: 26942125 PMCID: PMC4766872 DOI: 10.3389/fonc.2016.00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/28/2016] [Indexed: 01/31/2023] Open
Abstract
This review is focused on the radiobiology of carbon ions compared to X-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review, deals with radiation-induced cell migration and mucositis. Multicellular spheroids from V79 hamster cells were irradiated with X-rays or carbon ions under ambient or restricted oxygen supply conditions. Reliable oxygen enhancement ratios could be derived to be 2.9, 2.8, and 1.4 for irradiation with photons, 12C+6 in the plateau region, and 12C+6 in the Bragg peak, respectively. Similarly, a relative biological effectiveness of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M and a dose-dependent massive induction of apoptosis. These data clearly show that heavy charged particles are more efficient in sterilizing tumor cells than conventional irradiation even under hypoxic conditions. Clinically relevant doses (3 Gy) of X-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in β1 integrin expression. The photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor and AKT-ERK1/2 pathway. Such a hyperphosphorylation did not occur during 12C+6 irradiation under all conditions registered. Comparing the gene toxicity of X-rays with that of particles using the γH2AX technique in organotypic cultures of the oral mucosa, the superior effectiveness of heavy ions was confirmed by a twofold higher number of foci per nucleus. However, proinflammatory signs were similar for both treatment modalities, e.g., the activation of NFκB and the release of IL6 and IL8. The presence of peripheral blood mononuclear cell increased the radiation-induced release of the proinflammatory cytokines by factors of 2–3. Carbon ions are part of the cosmic radiation. Long-term exposure to such particles during extended space flights, as planned by international space agencies, may thus impose a medical and safety risk on the astronauts by a potential induction of mucositis. In summary, particle irradiation is superior to gamma-rays due to a higher radiobiological effectiveness, a reduced hypoxia-induced radioresistance, a multicellular radiosensitization, and the absence of a radiation-induced cell motility. However, the potential of inducing mucositis is similar for both radiation types.
Collapse
Affiliation(s)
- Stefan Walenta
- Institute of Pathophysiology, University Medical Center, University of Mainz , Mainz , Germany
| | | |
Collapse
|
21
|
Fujita M, Yamada S, Imai T. Irradiation induces diverse changes in invasive potential in cancer cell lines. Semin Cancer Biol 2015; 35:45-52. [DOI: 10.1016/j.semcancer.2015.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
|
22
|
Rabiej VK, Pflanzner T, Wagner T, Goetze K, Storck SE, Eble JA, Weggen S, Mueller-Klieser W, Pietrzik CU. Low density lipoprotein receptor-related protein 1 mediated endocytosis of β1-integrin influences cell adhesion and cell migration. Exp Cell Res 2015; 340:102-15. [PMID: 26610862 DOI: 10.1016/j.yexcr.2015.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/29/2022]
Abstract
The low density lipoprotein receptor-related protein 1 (LRP1) has been shown to interact with β1-integrin and regulate its surface expression. LRP1 knock-out cells exhibit altered cytoskeleton organization and decreased cell migration. Here we demonstrate coupled endocytosis of LRP1 and β1-integrin and the involvement of the intracellular NPxY2 motif of LRP1 in this process. Mouse embryonic fibroblasts harboring a knock in replacement of the NPxY2 motif of LRP1 by a multiple alanine cassette (AAxA) showed elevated surface expression of β1-integrin and decreased β1-integrin internalization rates. As a consequence, cell spreading was altered and adhesion rates were increased in our cell model. Cells formed more focal adhesion complexes, whereby in vitro cell migration rates were decreased. Similar results could be observed in a corresponding mouse model, the C57Bl6 LRP1 NPxYxxL knock in mice, therefore, the biochemistry of cellular adhesion was altered in primary cortical neurons. In vivo cell migration experiments demonstrated a disturbance of neuroblast cell migration along the rostral migratory stream. In summary, our results indicate that LRP1 interacts with β1-integrin mediating integrin internalization and thus correlates with downstream signaling of β1-integrin such as focal adhesion dynamics. Consequently, the disturbance of this interaction resulted in a dysfunction in in vivo and in vitro cell adhesion and cell migration.
Collapse
Affiliation(s)
- Verena K Rabiej
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Thorsten Pflanzner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Timo Wagner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Kristina Goetze
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Steffen E Storck
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, Westfälische Wilhelms-University Muenster, Waldeyerstraße 15, 48149 Muenster, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine-University, Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Wolfgang Mueller-Klieser
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099 Mainz, Germany.
| |
Collapse
|
23
|
Rieken S, Rieber J, Brons S, Habermehl D, Rief H, Orschiedt L, Lindel K, Weber KJ, Debus J, Combs SE. Radiation-induced motility alterations in medulloblastoma cells. JOURNAL OF RADIATION RESEARCH 2015; 56:430-436. [PMID: 25736470 PMCID: PMC4426914 DOI: 10.1093/jrr/rru120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 05/28/2023]
Abstract
Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins.
Collapse
Affiliation(s)
- Stefan Rieken
- University Hospital of Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Juliane Rieber
- University Hospital of Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion Treatment Facility (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| | - Daniel Habermehl
- Klinikum rechts der Isar, Technische Universität München, Klinik für Radioonkologie und Strahlentherapie, Ismaninger Straße 22, 81675 München, Germany
| | - Harald Rief
- University Hospital of Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Lena Orschiedt
- University Hospital of Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Katja Lindel
- University Hospital of Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Klaus J Weber
- University Hospital of Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jürgen Debus
- University Hospital of Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Stephanie E Combs
- Klinikum rechts der Isar, Technische Universität München, Klinik für Radioonkologie und Strahlentherapie, Ismaninger Straße 22, 81675 München, Germany
| |
Collapse
|
24
|
Abstract
Glioblastoma multiform is the most common and aggressive brain tumor with a worse prognostic. Ionizing radiation is a cornerstone in the treatment of glioblastome with chemo-radiation association being the actual standard. As a paradoxal effect, it has been suggested that radiotherapy could have a deleterious effect on local recurrence of cancer. In vivo studies have studied the effect of radiotherapy on biological modification and pathogenous effect of cancer cells. It seems that ionizing radiations with photon could activate oncogenic pathways in glioblastoma cell lines. We realized a review of the literature of photon-enhanced effect on invasion and migration of glioblastoma cells by radiotherapy.
Collapse
|
25
|
Zheng Q, Liu Y, Zhou HJ, Du YT, Zhang BP, Zhang J, Miao GY, Liu B, Zhang H. X-ray radiation promotes the metastatic potential of tongue squamous cell carcinoma cells via modulation of biomechanical and cytoskeletal properties. Hum Exp Toxicol 2015; 34:894-903. [PMID: 25586002 DOI: 10.1177/0960327114561664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study investigated the metastatic potential of tongue squamous cell carcinoma (TSCC) cells after X-ray irradiation as well as radiation-induced changes in the biomechanical properties and cytoskeletal structure that are relevant to metastasis. Tca-8113 TSCC cells were X-ray-irradiated at increasing doses (0, 1, 2, or 4 Gy), and 24 h later, migration was evaluated with the wound healing and transwell migration assays, while invasion was assessed with the Matrigel invasion assay. Confocal and atomic force microscopy were used to examine changes in the structure of the actin cytoskeleton and Young's modulus (cell stiffness), respectively. X-ray radiation induced dose-dependent increases in invasive and migratory potentials of cells relative to unirradiated control cells (p < 0.05). The Young's modulus of irradiated cells was decreased by radiation exposure (p < 0.05), which was accompanied by alterations in the integrity and organization of the cytoskeletal network, as evidenced by a decrease in the signal intensity of actin fibers (p < 0.05). X-ray irradiation enhanced migration and invasiveness in Tca-8113 TSCC cells by altering their biomechanical properties and the organization of the actin cytoskeleton. A biomechanics-based analysis can provide an additional platform for assessing tumor response to radiation and optimization of cancer therapies.
Collapse
Affiliation(s)
- Q Zheng
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Y Liu
- Department of Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, People's Republic of China
| | - H J Zhou
- School of Stomatology, Northwest University for Nationalities, Lanzhou, Gansu, People's Republic of China
| | - Y T Du
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - B P Zhang
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - J Zhang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - G Y Miao
- Department of Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, People's Republic of China
| | - B Liu
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, People's Republic of China Corresponding authors with equal contribution
| | - H Zhang
- Department of Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, People's Republic of China Corresponding authors with equal contribution
| |
Collapse
|
26
|
Suetens A, Moreels M, Quintens R, Soors E, Buset J, Chiriotti S, Tabury K, Gregoire V, Baatout S. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation. JOURNAL OF RADIATION RESEARCH 2015; 56:11-21. [PMID: 25190155 PMCID: PMC4572596 DOI: 10.1093/jrr/rru070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/01/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated (13)C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type-specific responses to the different radiation types.
Collapse
Affiliation(s)
- Annelies Suetens
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium Radiation Oncology Department and Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Bruxelles, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - Els Soors
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - Sabina Chiriotti
- Radiation Oncology Department and Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Bruxelles, Belgium Radiation Protection, Dosimetry and Calibration Expert Group, SCK•CEN, Mol, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - Vincent Gregoire
- Radiation Oncology Department and Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Bruxelles, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Expert Group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium Department of Molecular Biotechnology, Ghent University, Coupure links 653, Ghent, Belgium
| |
Collapse
|
27
|
Murata K, Noda SE, Oike T, Takahashi A, Yoshida Y, Suzuki Y, Ohno T, Funayama T, Kobayashi Y, Takahashi T, Nakano T. Increase in cell motility by carbon ion irradiation via the Rho signaling pathway and its inhibition by the ROCK inhibitor Y-27632 in lung adenocarcinoma A549 cells. JOURNAL OF RADIATION RESEARCH 2014; 55:658-664. [PMID: 24659807 PMCID: PMC4099995 DOI: 10.1093/jrr/rru002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/08/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to investigate the effect of carbon ion (C-ion) irradiation on cell motility through the ras homolog gene family member (Rho) signaling pathway in the human lung adenocarcinoma cell line A549. Cell motility was assessed by a wound-healing assay, and the formation of cell protrusions was evaluated by F-actin staining. Cell viability was examined by the WST-1 assay. The expression of myosin light chain 2 (MLC2) and the phosphorylation of MLC2 at Ser19 (P-MLC2-S19) were analyzed by Western blot. At 48 h after irradiation, the wound-healing assay demonstrated that migration was significantly greater in cells irradiated with C-ion (2 or 8 Gy) than in unirradiated cells. Similarly, F-actin staining showed that the formation of protrusions was significantly increased in cells irradiated with C-ion (2 or 8 Gy) compared with unirradiated cells. The observed increase in cell motility due to C-ion irradiation was similar to that observed due to X-ray irradiation. Western-blot analysis showed that C-ion irradiation (8 Gy) increased P-MLC2-S19 expression compared with in unirradiated controls, while total MLC2 expression was unchanged. Exposure to a non-toxic concentration of Y-27632, a specific inhibitor of Rho-associated coiled-coil-forming protein kinase (ROCK), reduced the expression of P-MLC2-S19 after C-ion irradiation (8 Gy), resulting in a significant reduction in migration. These data suggest that C-ion irradiation increases cell motility in A549 cells via the Rho signaling pathway and that ROCK inhibition reduces that effect.
Collapse
Affiliation(s)
- Kazutoshi Murata
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Shin-ei Noda
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akihisa Takahashi
- Advanced Scientific Research Leaders Development Unit, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tomoo Funayama
- Microbeam Radiation Biology Group, Japan Atomic Energy Agency, Watanuki 1233, Takasaki, Gunma 370-1292, Japan
| | - Yasuhiko Kobayashi
- Microbeam Radiation Biology Group, Japan Atomic Energy Agency, Watanuki 1233, Takasaki, Gunma 370-1292, Japan
| | - Takeo Takahashi
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, 1981, Kamoda, Kawagoe, Saitama 350-8550, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
28
|
Moncharmont C, Levy A, Guy JB, Falk AT, Guilbert M, Trone JC, Alphonse G, Gilormini M, Ardail D, Toillon RA, Rodriguez-Lafrasse C, Magné N. Radiation-enhanced cell migration/invasion process: a review. Crit Rev Oncol Hematol 2014; 92:133-42. [PMID: 24908570 DOI: 10.1016/j.critrevonc.2014.05.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/25/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is a keystone treatment in cancer. Photon radiation has proved its benefits in overall survival in many clinical studies. However, some patients present local recurrences or metastases when cancer cells survive to treatment. Metastasis is a process which includes adhesion of the cell to the extracellular matrix, degradation of the matrix by proteases, cell motility, intravasation in blood or lymphatic vessels, extravasation in distant parenchyma and development of cell colonies. Several studies demonstrated that ionizing radiation might promote migration and invasion of tumor cells by intricate implications in the micro-environment, cell-cell junctions, extracellular matrix junctions, proteases secretion, and induction of epithelial-mesenchymal transition. This review reports various cellular pathways involved in the photon-enhanced cell invasion process for which potential therapeutic target may be employed for enhancing antitumor effectiveness. Understanding these mechanisms could lead to therapeutic strategies to counter the highly invasive cell lines via specific inhibitors or carbon-ion therapy.
Collapse
Affiliation(s)
- Coralie Moncharmont
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France; Department of Radiotherapy, Institut de Cancérologie de la Lucien Neuwirth, St Priest en Jarez, France
| | - Antonin Levy
- Department of Radiotherapy, GustaveRoussy, Villejuif, France
| | - Jean-Baptiste Guy
- Department of Radiotherapy, Institut de Cancérologie de la Lucien Neuwirth, St Priest en Jarez, France
| | - Alexander T Falk
- Department of Radiotherapy, Centre Antoine Lacassagne, Nice, France
| | - Matthieu Guilbert
- INSERM U908, Growth Factor Signalling in Breast Cancer, Functional Proteomics, University Lille 1, IFR-147, 59000 Villeneuve d'Ascq, France
| | - Jane-Chloé Trone
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Gersende Alphonse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Marion Gilormini
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Dominique Ardail
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Robert-Alain Toillon
- INSERM U908, Growth Factor Signalling in Breast Cancer, Functional Proteomics, University Lille 1, IFR-147, 59000 Villeneuve d'Ascq, France
| | - Claire Rodriguez-Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Nicolas Magné
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France; Department of Radiotherapy, Institut de Cancérologie de la Lucien Neuwirth, St Priest en Jarez, France.
| |
Collapse
|
29
|
Karger CP, Scholz M, Huber PE, Debus J, Peschke P. Photon and carbon ion irradiation of a rat prostate carcinoma: does a higher fraction number increase the metastatic rate? Radiat Res 2014; 181:623-8. [PMID: 24844648 DOI: 10.1667/rr13611.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In a recent published study, we investigated the response of an experimental prostate carcinoma (R3327-AT1) after irradiation with 1, 2 or 6 fractions of carbon ions or photons, respectively. The original intention of this study was to measure the dose-dependent local control probability as well as the related relative biological effectiveness of carbon ions. However, we now report an increased metastatic rate when the number of fractions was increased from 2 to 6. In a total of 246 animals, the actuarial metastatic rates for 1, 2 and 6 fractions were 5.1 ± 3.5%, 5.7 ± 4.0% and 15.3 ± 7.1% for photons and 9.8 ± 7.5%, 4.0 ± 3.9% and 20.3 ± 6.5% for carbon ions, respectively. The increase was significant only for carbon ions (6 vs. 2 fractions,P = 0.03). Although the original experiment was not designed to investigate metastatic rates, this observation may be of general interest to researchers studying radiation-modulated metastatic activity.
Collapse
Affiliation(s)
- Christian P Karger
- a Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | |
Collapse
|
30
|
Suetens A, Moreels M, Quintens R, Chiriotti S, Tabury K, Michaux A, Grégoire V, Baatout S. Carbon ion irradiation of the human prostate cancer cell line PC3: a whole genome microarray study. Int J Oncol 2014; 44:1056-72. [PMID: 24504141 PMCID: PMC3977812 DOI: 10.3892/ijo.2014.2287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/29/2013] [Indexed: 01/13/2023] Open
Abstract
Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/μm) at the beam of the Grand Accélérateur National d’Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy.
Collapse
Affiliation(s)
- Annelies Suetens
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Sabina Chiriotti
- Radiation Protection, Dosimetry and Calibration Expert Group, SCK•CEN, Mol, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Arlette Michaux
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Vincent Grégoire
- Department of Radiation Oncology and Center for Molecular Imaging, Radiotherapy and Oncology, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
31
|
Vehlow A, Cordes N. Invasion as target for therapy of glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2013; 1836:236-44. [PMID: 23891970 DOI: 10.1016/j.bbcan.2013.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 12/27/2022]
Abstract
The survival of cancer patients suffering from glioblastoma multiforme is limited to just a few months even after treatment with the most advanced techniques. The indefinable borders of glioblastoma cell infiltration into the surrounding healthy tissue prevent complete surgical removal. In addition, genetic mutations, epigenetic modifications and microenvironmental heterogeneity cause resistance to radio- and chemotherapy altogether resulting in a hardly to overcome therapeutic scenario. Therefore, the development of efficient therapeutic strategies to combat these tumors requires a better knowledge of genetic and proteomic alterations as well as the infiltrative behavior of glioblastoma cells and how this can be targeted. Among many cell surface receptors, members of the integrin family are known to regulate glioblastoma cell invasion in concert with extracellular matrix degrading proteases. While preclinical and early clinical trials suggested specific integrin targeting as a promising therapeutic approach, clinical trials failed to deliver improved cure rates up to now. Little is known about glioblastoma cell motility, but switches in invasion modes and adaption to specific microenvironmental cues as a consequence of treatment may maintain tumor cell resistance to therapy. Thus, understanding the molecular basis of integrin and protease function for glioblastoma cell invasion in the context of radiochemotherapy is a pressing issue and may be beneficial for the design of efficient therapeutic approaches. This review article summarizes the latest findings on integrins and extracellular matrix in glioblastoma and adds some perspective thoughts on how this knowledge might be exploited for optimized multimodal therapy approaches.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
| | | |
Collapse
|
32
|
Stahler C, Roth J, Cordes N, Taucher-Scholz G, Mueller-Klieser W. Impact of carbon ion irradiation on epidermal growth factor receptor signaling and glioma cell migration in comparison to conventional photon irradiation. Int J Radiat Biol 2013; 89:454-61. [DOI: 10.3109/09553002.2013.766769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression. Int J Radiat Oncol Biol Phys 2012; 83:394-9. [DOI: 10.1016/j.ijrobp.2011.06.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/30/2011] [Accepted: 06/24/2011] [Indexed: 12/15/2022]
|
34
|
Fujita M, Otsuka Y, Imadome K, Endo S, Yamada S, Imai T. Carbon-ion radiation enhances migration ability and invasiveness of the pancreatic cancer cell, PANC-1, in vitro. Cancer Sci 2012; 103:677-83. [PMID: 22171596 DOI: 10.1111/j.1349-7006.2011.02190.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pancreatic cancer is an aggressive disease that responds poorly to conventional photon radiotherapy. Carbon-ion (C-ion) radiation has advantages compared with conventional radiotherapy, because it enables more accurate dose distribution and more efficient tumor cell killing. To elucidate the effects of local radiotherapy on the characteristics of metastatic tumors, it is necessary to understand the nature of motility in irradiated tumor cells; this will, in turn, facilitate the development of effective strategies to counter tumor cell motility, which can be used in combination with radiotherapy. The aim of the present study was to examine the invasiveness of pancreatic cancer cells exposed to C-ion irradiation. We found that C-ion irradiation suppressed the migration of MIAPaCa-2, BxPC-3 and AsPC-1; diminished the invasiveness of MIAPaCa-2; and tended to reduce the invasion of BxPC-3 and AsPC-1. However, C-ion irradiation increased the invasiveness of PANC-1 through the activation of plasmin and urokinase-type plasiminogen activator. Administration of serine protease inhibitor (SerPI) alone failed to reduce C-ion-induced PANC-1 invasiveness, whereas the combination of SerPI and Rho-associated coiled-coil forming protein kinase (ROCK) inhibitor suppressed it. Furthermore, PANC-1 showed mesenchymal-amoeboid transition when we treated with SerPI alone. In conclusion, C-ion irradiation is effective in suppressing the invasive potential of several pancreatic tumor cell lines, but not PANC-1; this is the first study showing that C-ion irradiation induces the invasive potential of a tumor cell line. Further in vivo studies are required to examine the therapeutic effectiveness of radiotherapy combined with inhibitors of both mesenchymal and amoeboid modes of tumor cell motility.
Collapse
Affiliation(s)
- Mayumi Fujita
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Assessment of the tumourigenic and metastatic properties of SK-MEL28 melanoma cells surviving electrochemotherapy with bleomycin. Radiol Oncol 2012; 46:32-45. [PMID: 22933978 PMCID: PMC3423760 DOI: 10.2478/v10019-012-0010-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/20/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Electrochemotherapy is a local treatment combining chemotherapy and electroporation and is highly effective treatment approach for subcutaneous tumours of various histologies. Contrary to surgery and radiation, the effect of electrochemotherapy on metastatic potential of tumour cells has not been extensively studied. The aim of the study was to evaluate the effect of electrochemotherapy with bleomycin on the metastatic potential of human melanoma cells in vitro. MATERIALS AND METHODS Viable cells 48 hours after electrochemotherapy were tested for their ability to migrate and invade through Matrigel coated porous membrane. In addition, microarray analysis and quantitative Real-Time PCR were used to detect changes in gene expression after electrochemotherapy. RESULTS Cell migration and invasion were not changed in melanoma cells surviving electrochemotherapy. Interestingly, only a low number of tumourigenesis related genes was differentially expressed after electrochemotherapy. CONCLUSIONS Our data suggest that metastatic potential of human melanoma cells is not affected by electrochemotherapy with bleomycin, confirming safe role of electrochemotherapy in the clinics.
Collapse
|
36
|
Rieken S, Habermehl D, Mohr A, Wuerth L, Lindel K, Weber K, Debus J, Combs SE. Targeting ανβ3 and ανβ5 inhibits photon-induced hypermigration of malignant glioma cells. Radiat Oncol 2011; 6:132. [PMID: 21978494 PMCID: PMC3195721 DOI: 10.1186/1748-717x-6-132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background Sublethal photon irradiation was recently suspected to increase tumor cell motility and promote locoregional recurrence of disease. This study was set up to describe mechanisms underlying increased glioma cell migration through photon irradiation and to analyse the modifiability of photon-altered glioma cell motility by integrin inhibition. Methods Eight μm pore size membranes were coated with vitronectin (VN), collagen I and collagen IV. U87 and Ln229 glioma cells were analysed in migration experiments with and without radiotherapy (RT), serum stimulation and addition of monoclonal antibodies directed to human integrins ανβ3 and ανβ5. Quantitative FACS analysis of integrins was performed in U87 and Ln229 glioma cells following RT. Statistical analysis was performed using Student's t-test. Results Glioma cell migration is serum-dependent and can be increased by photon RT which leads to enhanced expression of Vn receptor integrins. Blocking of either ανβ3 or ανβ5 integrins by antibodies inhibits Vn-based migration of both untreated and photon-irradiated glioma cells. Conclusions Peripheral glioma cells are at risk of attraction into the adjacent healthy brain by serum components leaking through the blood brain barrier (BBB). Radiation therapy is associated with upregulation of Vn receptor integrins and enhanced glioma cell migration at sublethal doses. This effect can be inhibited by specific integrin blockade. Future therapeutical benefit may be derived from pharmacological integrin inhibition in combination with photon irradiation.
Collapse
Affiliation(s)
- Stefan Rieken
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fujita M, Otsuka Y, Yamada S, Iwakawa M, Imai T. X-ray irradiation and Rho-kinase inhibitor additively induce invasiveness of the cells of the pancreatic cancer line, MIAPaCa-2, which exhibits mesenchymal and amoeboid motility. Cancer Sci 2011; 102:792-8. [PMID: 21214671 PMCID: PMC11159345 DOI: 10.1111/j.1349-7006.2011.01852.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 12/31/2022] Open
Abstract
Tumor cells can migrate and invade tissue by two modes of motility: mesenchymal and amoeboid. X-ray or γ-ray irradiation increases the invasiveness of tumor cells with mesenchymal motility through the induction of matrix metalloproteinases (MMP), and this increase is suppressed by MMP inhibitors (MMPI). However, the effects of X-ray or γ-ray irradiation on the invasiveness of tumor cells with amoeboid motility remain unclear. We investigated the effect of irradiation on amoeboid motility by using cells of the human pancreatic cancer line, MIAPaCa-2, which exhibits both modes of motility. The X-ray-induced invasiveness of MIAPaCa-2 cells was associated with the upregulation of MMP2 at both the RNA and protein levels and was inhibited by MMPI treatment. Amoeboid-mesenchymal transition was slightly induced after irradiation. The MMPI treatment caused mesenchymal-amoeboid transition without significant increase in invasiveness, while the ROCK inhibitor (ROCKI) stimulated amoeboid-mesenchymal transition and enhanced invasiveness under both non-irradiated and irradiated conditions. This ROCKI-induced transition was accompanied by the upregulation of MMP2 mRNA and protein. Exposure to both irradiation and ROCKI further enhanced MMP2 expression and had an additive effect on the invasiveness of MIAPaCa-2 cells. Additionally, exposure to MMPI led to significant suppression of both radiation-induced and the basal invasiveness of MIAPaCa-2 cells. This suggests that ROCKI treatment, especially with concomitant X-ray irradiation, can induce invasion of cancer cells and should be used only for certain types of cancer cells. Simultaneous use of inhibitors, ROCKI and MMPI may be effective in suppressing invasiveness under both X-ray-irradiated and non-irradiated conditions.
Collapse
Affiliation(s)
- Mayumi Fujita
- RadGenomics Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | |
Collapse
|
38
|
Niemoeller OM, Niyazi M, Corradini S, Zehentmayr F, Li M, Lauber K, Belka C. MicroRNA expression profiles in human cancer cells after ionizing radiation. Radiat Oncol 2011; 6:29. [PMID: 21453501 PMCID: PMC3079656 DOI: 10.1186/1748-717x-6-29] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/31/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION MicroRNAs are regulators of central cellular processes and are implicated in the pathogenesis and prognosis of human cancers. MicroRNAs also modulate responses to anti-cancer therapy. In the context of radiation oncology microRNAs were found to modulate cell death and proliferation after irradiation. However, changes in microRNA expression profiles in response to irradiation have not been comprehensively analyzed so far. The present study's intend is to present a broad screen of changes in microRNA expression following irradiation of different malignant cell lines. MATERIALS AND METHODS 1100 microRNAs (Sanger miRBase release version 14.0) were analyzed in six malignant cell lines following irradiation with clinically relevant doses of 2.0 Gy. MicroRNA levels 6 hours after irradiation were compared to microRNA levels in non-irradiated cells using the "Geniom Biochip MPEA homo sapiens". RESULTS Hierarchical clustering analysis revealed a pattern, which significantly (p = 0.014) discerned irradiated from non-irradiated cells. The expression levels of a number of microRNAs known to be involved in the regulation of cellular processes like apoptosis, proliferation, invasion, local immune response and radioresistance (e. g. miR-1285, miR-24-1, miR-151-5p, let-7i) displayed 2 - 3-fold changes after irradiation. Moreover, several microRNAs previously not known to be radiation-responsive were discovered. CONCLUSION Ionizing radiation induced significant changes in microRNA expression profiles in 3 glioma and 3 squamous cell carcinoma cell lines. The functional relevance of these changes is not addressed but should by analyzed by future work especially focusing on clinically relevant endpoints like radiation induced cell death, proliferation, migration and metastasis.
Collapse
Affiliation(s)
- Olivier M Niemoeller
- Department of Radiation Oncology, Ludwig-Maximilians University of Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Goetze K, Scholz M, Taucher-Scholz G, Mueller-Klieser W. Tumor cell migration is not influenced by p21 in colon carcinoma cell lines after irradiation with X-ray or (12)C heavy ions. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:427-435. [PMID: 20535615 DOI: 10.1007/s00411-010-0297-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 05/21/2010] [Indexed: 05/29/2023]
Abstract
Metastasis and recurrences are major problems regarding an effective treatment of solid malignant tumors in clinical oncology. Since the impact of radiation on cell motility is not yet well understood, intrinsic and radiation-induced changes in cell migration have been discussed as possible mechanisms involved in the limitations of radiotherapy. This holds true for conventional radiation treatment and even more for the cellular and molecular effects of therapeutically relevant (12)C heavy ions. The present study is therefore focused on the investigation of tumor cell migration in vitro after irradiation with X-rays and (12)C heavy ions and on radiation-induced changes in the expression of proteins that are potentially relevant for motility. Two colon carcinoma cell lines, HCT116 and HCT116 p21-/-, were chosen for this study, which should be isogenic except for their p21-status. We can show here that cells lacking p21 react almost alike to radiation as wild type cells regarding survival and tumor cell migration 24 h after irradiation. Interestingly, differences in protein expression 24 h after irradiation of beta(1) integrin and protein kinase B isoforms Akt1 and Akt2 seem to exist. We conclude that tumor cell migration is unaffected by the p21-status in colorectal carcinoma cells and that the expression of the aforementioned proteins alone is not accountable for the differences observed.
Collapse
Affiliation(s)
- Kristina Goetze
- Institute of Physiology and Pathophysiology, University Medical Centre of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | | | | | | |
Collapse
|
40
|
Hamada N, Imaoka T, Masunaga SI, Ogata T, Okayasu R, Takahashi A, Kato TA, Kobayashi Y, Ohnishi T, Ono K, Shimada Y, Teshima T. Recent advances in the biology of heavy-ion cancer therapy. JOURNAL OF RADIATION RESEARCH 2010; 51:365-383. [PMID: 20679739 DOI: 10.1269/jrr.09137] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Superb biological effectiveness and dose conformity represent a rationale for heavy-ion therapy, which has thus far achieved good cancer controllability while sparing critical normal organs. Immediately after irradiation, heavy ions produce dense ionization along their trajectories, cause irreparable clustered DNA damage, and alter cellular ultrastructure. These ions, as a consequence, inactivate cells more effectively with less cell-cycle and oxygen dependence than conventional photons. The modes of heavy ion-induced cell death/inactivation include apoptosis, necrosis, autophagy, premature senescence, accelerated differentiation, delayed reproductive death of progeny cells, and bystander cell death. This paper briefly reviews the current knowledge of the biological aspects of heavy-ion therapy, with emphasis on the authors' recent findings. The topics include (i) repair mechanisms of heavy ion-induced DNA damage, (ii) superior effects of heavy ions on radioresistant tumor cells (intratumor quiescent cell population, TP53-mutated and BCL2-overexpressing tumors), (iii) novel capacity of heavy ions in suppressing cancer metastasis and neoangiogenesis, and (iv) potential of heavy ions to induce secondary (especially breast) cancer.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Komae, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Radiotherapy is one of the most common and effective therapies for cancer. Generally, patients are treated with X-rays produced by electron accelerators. Many years ago, researchers proposed that high-energy charged particles could be used for this purpose, owing to their physical and radiobiological advantages compared with X-rays. Particle therapy is an emerging technique in radiotherapy. Protons and carbon ions have been used for treating many different solid cancers, and several new centers with large accelerators are under construction. Debate continues on the cost:benefit ratio of this technique, that is, on whether the high costs of accelerators and beam delivery in particle therapy are justified by a clear clinical advantage. This Review considers the present clinical results in the field, and identifies and discusses the research questions that have resulted with this technique.
Collapse
|
42
|
Mosch B, Mueller K, Steinbach J, Pietzsch J. Influence of irradiation on metabolism and metastatic potential of B16-F10 melanoma cells. Int J Radiat Biol 2009; 85:1002-12. [PMID: 19895277 DOI: 10.3109/09553000903258871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To analyse short term and long term X-ray irradiation effects on proliferation, viability, glucose and amino acid uptake of murine melanoma cells in vitro and metastasis in vivo. MATERIALS AND METHODS B16-F10 melanoma cells were irradiated with different doses of X-ray irradiation (200 kV) in the range from 1-20 Gy. One, two and three days respectively 7, 14 and 21 days after treatment cells were analysed concerning cell growth, viability, proliferation, cell cycle distribution, glucose and amino acid transport. Moreover the capability of the cells for in vivo metastasis was examined. RESULTS As short term response on irradiation we detected decreased cell growth, viability and arrest in the G2/M phase of the cell cycle. Long term response involves re-start of proliferation, increased cell growth and glucose uptake but still decreased viability and amino acid transport. In vivo metastasis is lost immediately after irradiation and regained to a low extent beyond two weeks time for recurrence of cells before injection. CONCLUSIONS In vitro data suggest that surviving melanoma cells compensate the initial irradiation-dependent damage of proliferation within three weeks possibly by increase in glucose uptake. For metastasis in vivo the role of additional mechanisms is strongly suggested.
Collapse
Affiliation(s)
- Birgit Mosch
- Department of Radiopharmaceutical Biology, Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, Dresden, Germany.
| | | | | | | |
Collapse
|
43
|
Fokas E, Kraft G, An H, Engenhart-Cabillic R. Ion beam radiobiology and cancer: time to update ourselves. Biochim Biophys Acta Rev Cancer 2009; 1796:216-29. [PMID: 19682551 DOI: 10.1016/j.bbcan.2009.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 12/20/2022]
Abstract
High-energy protons and carbon ions exhibit an inverse dose profile allowing for increased energy deposition with penetration depth. Additionally, heavier ions like carbon beams have the advantage of a markedly increased biological effectiveness characterized by enhanced ionization density in the individual tracks of the heavy particles, where DNA damage becomes clustered and therefore more difficult to repair, but is restricted to the end of their range. These superior biophysical and biological profiles of particle beams over conventional radiotherapy permit more precise dose localization and make them highly attractive for treating anatomically complex and radioresistant malignant tumors but without increasing the severe side effects in the normal tissue. More than half a century since Wilson proposed their use in cancer therapy, the effects of particle beams have been extensively investigated and the biological complexity of particle beam irradiation begins to unfold itself. The goal of this review is to provide an as comprehensive and up-to-date summary as possible of the different radiobiological aspects of particle beams for effective application in cancer treatment.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Radiotherapy and Radiation Oncology, University Hospital Giessen and Marburg, Medical Faculty of Philipps University, Baldingerstrasse, 35043 Marburg, Germany.
| | | | | | | |
Collapse
|
44
|
Tamaki T, Iwakawa M, Ohno T, Imadome K, Nakawatari M, Sakai M, Tsujii H, Nakano T, Imai T. Application of carbon-ion beams or gamma-rays on primary tumors does not change the expression profiles of metastatic tumors in an in vivo murine model. Int J Radiat Oncol Biol Phys 2009; 74:210-8. [PMID: 19362239 DOI: 10.1016/j.ijrobp.2008.12.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/21/2008] [Accepted: 12/29/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE To clarify how carbon-ion radiotherapy (C-ion) on primary tumors affects the characteristics of subsequently arising metastatic tumor cells. METHODS AND MATERIALS Mouse squamous cell carcinomas, NR-S1, in synergic C3H/HeMsNrs mice were irradiated with a single dose of 5-50 Gy of C-ion (290 MeV per nucleon, 6-cm spread-out Bragg peak) or gamma-rays ((137)Cs source) as a reference beam. The volume of the primary tumors and the number of metastatic nodules in lung were studied, and histologic analysis and microarray analysis of laser-microdissected tumor cells were also performed. RESULTS Including 5 Gy of C-ion and 8 Gy of gamma-rays, which did not inhibit the primary tumor growth, all doses used in this study inhibited lung metastasis significantly. Pathologic findings showed no difference among the metastatic tumor nodules in the nonirradiated, C-ion-irradiated, and gamma-ray-irradiated groups. Clustering analysis of expression profiles among metastatic tumors and primary tumors revealed a single cluster consisting of metastatic tumors different from their original primary tumors, indicating that the expression profiles of the metastatic tumor cells were not affected by the local application of C-ion or gamma-ray radiotherapy. CONCLUSION We found no difference in the incidence and histology, and only small differences in expression profile, of distant metastasis between local C-ion and gamma-ray radiotherapy. The application of local radiotherapy per se or the type of radiotherapy applied did not influence the transcriptional changes caused by metastasis in tumor cells.
Collapse
Affiliation(s)
- Tomoaki Tamaki
- RadGenomics Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|