1
|
Abu Shqair A, Kim EH. Multi-scaled Monte Carlo calculation for radon-induced cellular damage in the bronchial airway epithelium. Sci Rep 2021; 11:10230. [PMID: 33986410 PMCID: PMC8119983 DOI: 10.1038/s41598-021-89689-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Radon is a leading cause of lung cancer in indoor public and mining workers. Inhaled radon progeny releases alpha particles, which can damage cells in the airway epithelium. The extent and complexity of cellular damage vary depending on the alpha particle's kinetic energy and cell characteristics. We developed a framework to quantitate the cellular damage on the nanometer and micrometer scales at different intensities of exposure to radon progenies Po-218 and Po-214. Energy depositions along the tracks of alpha particles that were slowing down were simulated on a nanometer scale using the Monte Carlo code Geant4-DNA. The nano-scaled track histories in a 5 μm radius and 1 μm-thick cylindrical volume were integrated into the tracking scheme of alpha trajectories in a micron-scale bronchial epithelium segment in the user-written SNU-CDS program. Damage distribution in cellular DNA was estimated for six cell types in the epithelium. Deep-sited cell nuclei in the epithelium would have less chance of being hit, but DNA damage from a single hit would be more serious, because low-energy alpha particles of high LET would hit the nuclei. The greater damage in deep-sited nuclei was due to the 7.69 MeV alpha particles emitted from Po-214. From daily work under 1 WL of radon concentration, basal cells would respond with the highest portion of complex DSBs among the suspected progenitor cells in the most exposed regions of the lung epithelium.
Collapse
Affiliation(s)
- Ali Abu Shqair
- Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Hee Kim
- Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Hofmann W, Li WB, Friedland W, Miller BW, Madas B, Bardiès M, Balásházy I. Internal microdosimetry of alpha-emitting radionuclides. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:29-62. [PMID: 31863162 PMCID: PMC7012986 DOI: 10.1007/s00411-019-00826-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/08/2019] [Indexed: 05/27/2023]
Abstract
At the tissue level, energy deposition in cells is determined by the microdistribution of alpha-emitting radionuclides in relation to sensitive target cells. Furthermore, the highly localized energy deposition of alpha particle tracks and the limited range of alpha particles in tissue produce a highly inhomogeneous energy deposition in traversed cell nuclei. Thus, energy deposition in cell nuclei in a given tissue is characterized by the probability of alpha particle hits and, in the case of a hit, by the energy deposited there. In classical microdosimetry, the randomness of energy deposition in cellular sites is described by a stochastic quantity, the specific energy, which approximates the macroscopic dose for a sufficiently large number of energy deposition events. Typical examples of the alpha-emitting radionuclides in internal microdosimetry are radon progeny and plutonium in the lungs, plutonium and americium in bones, and radium in targeted radionuclide therapy. Several microdosimetric approaches have been proposed to relate specific energy distributions to radiobiological effects, such as hit-related concepts, LET and track length-based models, effect-specific interpretations of specific energy distributions, such as the dual radiation action theory or the hit-size effectiveness function, and finally track structure models. Since microdosimetry characterizes only the initial step of energy deposition, microdosimetric concepts are most successful in exposure situations where biological effects are dominated by energy deposition, but not by subsequently operating biological mechanisms. Indeed, the simulation of the combined action of physical and biological factors may eventually require the application of track structure models at the nanometer scale.
Collapse
Affiliation(s)
- Werner Hofmann
- Biological Physics, Department of Chemistry and Physics of Materials, University of Salzburg, Hellbrunner Str. 34, 5020, Salzburg, Austria.
| | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Werner Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Brian W Miller
- Department of Radiation Oncology, School of Medicine, University of Colorado, Aurora, CO, 80045, USA
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Balázs Madas
- Environmental Physics Department, MTA Centre for Energy Research, Budapest, Hungary
| | - Manuel Bardiès
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, INSERM Université Paul Sabatier, Toulouse, France
| | - Imre Balásházy
- Environmental Physics Department, MTA Centre for Energy Research, Budapest, Hungary
| |
Collapse
|
3
|
Madas BG, Drozsdik EJ. Effects of mucus thickness and goblet cell hyperplasia on microdosimetric quantities characterizing the bronchial epithelium upon radon exposure. Int J Radiat Biol 2018; 94:967-974. [PMID: 30265181 DOI: 10.1080/09553002.2018.1511931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE The most exposed tissue upon radon exposure is the bronchial epithelium where goblet cells serve as responsive and adaptable front-line defenders. They can rapidly produce a vast amount of mucus, and can change in number, in response to airway insults. The objective of the present study is to quantify the effects of mucus discharge and goblet cell hyperplasia on the microscopic dose consequences of macroscopic radon exposures. METHODS For this purpose, computational models of the bronchial epithelium and alpha-particle transport have been prepared and applied to quantify the hits received and doses absorbed by cell nuclei in case of different mucus thicknesses and goblet cell number. RESULTS AND CONCLUSIONS Both mucus discharge and induction of goblet cell hyperplasia reduce radiation burden at the cellular level, and as such they both can be considered as radioadaptive responses to radon exposure. As compared to basal cell hyperplasia, goblet cell hyperplasia is more effective in reducing the microscopic dose consequences of a given macroscopic exposure. Such changes in exposure geometry highlight the need for improvements in the application of biokinetic and dosimetry models for incorporated radionuclides as well as the dose and dose rate effectiveness factor.
Collapse
Affiliation(s)
| | - Emese J Drozsdik
- a MTA Centre for Energy Research , Budapest , Hungary.,b Doctoral School of Physics , ELTE Eötvös Loránd University , Budapest , Hungary
| |
Collapse
|
4
|
Madas BG. Radon induced hyperplasia: effective adaptation reducing the local doses in the bronchial epithelium. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:653-666. [PMID: 27517484 DOI: 10.1088/0952-4746/36/3/653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There is experimental and histological evidence that chronic irritation and cell death may cause hyperplasia in the exposed tissue. As the heterogeneous deposition of inhaled radon progeny results in high local doses at the peak of the bronchial bifurcations, it was proposed earlier that hyperplasia occurs in these deposition hot spots upon chronic radon exposure. The objective of the present study is to quantify how the induction of basal cell hyperplasia modulates the microdosimetric consequences of a given radon exposure. For this purpose, computational epithelium models were constructed with spherical cell nuclei of six different cell types based on histological data. Basal cell hyperplasia was modelled by epithelium models with additional basal cells and increased epithelium thickness. Microdosimetry for alpha-particles was performed by an own-developed Monte-Carlo code. Results show that the average tissue dose, and the average hit number and dose of basal cells decrease by the increase of the measure of hyperplasia. Hit and dose distribution reveal that the induction of hyperplasia may result in a basal cell pool which is shielded from alpha-radiation. It highlights that the exposure history affects the microdosimetric consequences of a present exposure, while the biological and health effects may also depend on previous exposures. The induction of hyperplasia can be considered as a radioadaptive response at the tissue level. Such an adaptation of the tissue challenges the validity of the application of the dose and dose rate effectiveness factor from a mechanistic point of view. As the location of radiosensitive target cells may change due to previous exposures, dosimetry models considering the tissue geometry characteristic of normal conditions may be inappropriate for dose estimation in case of protracted exposures. As internal exposures are frequently chronic, such changes in tissue geometry may be highly relevant for other incorporated radionuclides.
Collapse
Affiliation(s)
- Balázs G Madas
- Radiation Biophysics Group, Environmental Physics Department, Centre for Energy Research, Hungarian Academy of Sciences, 1121 Budapest, Konkoly-Thege Miklós út 29-33., Hungary
| |
Collapse
|
5
|
Rühm W, Fantuzzi E, Harrison R, Schuhmacher H, Vanhavere F, Alves J, Bottollier Depois JF, Fattibene P, Knežević Ž, Lopez MA, Mayer S, Miljanić S, Neumaier S, Olko P, Stadtmann H, Tanner R, Woda C. EURADOS strategic research agenda: vision for dosimetry of ionising radiation. RADIATION PROTECTION DOSIMETRY 2016; 168:223-34. [PMID: 25752758 PMCID: PMC4884873 DOI: 10.1093/rpd/ncv018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 05/04/2023]
Abstract
Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org).
Collapse
Affiliation(s)
- W Rühm
- Helmholtz Center Munich, Institute of Radiation Protection, Neuherberg, Germany
| | - E Fantuzzi
- Radiation Protection Institute, ENEA, Bologna, Italy
| | | | - H Schuhmacher
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - F Vanhavere
- Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
| | - J Alves
- Instituto Superior Técnico (IST), CTN, Lisboa, Portugal
| | - J F Bottollier Depois
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - P Fattibene
- Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Ž Knežević
- Ruđer Bošković Institute (RBI), Zagreb, Croatia
| | - M A Lopez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - S Mayer
- Paul Scherer Institut (PSI), Villigen, Switzerland
| | - S Miljanić
- Ruđer Bošković Institute (RBI), Zagreb, Croatia
| | - S Neumaier
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - P Olko
- Instytut Fizyki Jądrowej (IFJ), Krakow, Poland
| | - H Stadtmann
- Seibersdorf Labor GmbH, Seibersdorf, Austria
| | - R Tanner
- Public Health England, Chilton, Didcot, UK
| | - C Woda
- Helmholtz Center Munich, Institute of Radiation Protection, Neuherberg, Germany
| |
Collapse
|
6
|
Giussani A. Models and phantoms for internal dose assessment. RADIATION PROTECTION DOSIMETRY 2015; 164:46-50. [PMID: 25305216 DOI: 10.1093/rpd/ncu313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Radiation doses delivered by incorporated radionuclides cannot be directly measured, and they are assessed by means of biokinetic and dosimetric models and computational phantoms. For emitters of short-range radiation like alpha-particles or Auger electrons, the doses at organ levels, as they are usually defined in internal dosimetry, are no longer relevant. Modelling the inter- and intra-cellular radiation transport and the local patterns of deposition at molecular or cellular levels are the challenging tasks of micro- and nano-dosimetry. With time, the physiological and anatomical realism of the models and phantoms have increased. However, not always the information is available that would be required to characterise the greater complexity of the recent models. Uncertainty studies in internal dose assessment provide here a valuable contribution for testing the significance of the new dose estimates and of the discrepancies from the previous values. Some of the challenges, limitations and future perspectives of the use of models and phantoms in internal dosimetry are discussed in the present manuscript.
Collapse
Affiliation(s)
- Augusto Giussani
- Department of Radiation and Health, BfS-Federal Office for Radiation Protection, Ingolstädter Landstr. 1, Oberschleißheim 85764, Germany
| |
Collapse
|
7
|
Szőke I, Farkas A, Balásházy I, Hofmann W, Madas BG, Szőke R. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects. Int J Radiat Biol 2012; 88:477-92. [PMID: 22420832 DOI: 10.3109/09553002.2012.676229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The primary objective of this paper was to investigate the distribution of radiation doses and the related biological responses in cells of a central airway bifurcation of the human lung of a hypothetical worker of the New Mexico uranium mines during approximately 12 hours of exposure to short-lived radon progenies. MATERIALS AND METHODS State-of-the-art computational modelling techniques were applied to simulate the relevant biophysical and biological processes in a central human airway bifurcation. RESULTS The non-uniform deposition pattern of inhaled radon daughters caused a non-uniform distribution of energy deposition among cells, and of related cell inactivation and cell transformation probabilities. When damage propagation via bystander signalling was assessed, it produced more cell killing and cell transformation events than did direct effects. If bystander signalling was considered, variations of the average probabilities of cell killing and cell transformation were supra-linear over time. CONCLUSIONS Our results are very sensitive to the radiobiological parameters, derived from in vitro experiments (e.g., range of bystander signalling), applied in this work and suggest that these parameters may not be directly applicable to realistic three-dimensional (3D) epithelium models.
Collapse
Affiliation(s)
- István Szőke
- Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
8
|
Madas BG, Balásházy I. Mutation induction by inhaled radon progeny modeled at the tissue level. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:553-570. [PMID: 21894440 DOI: 10.1007/s00411-011-0382-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/12/2011] [Indexed: 05/27/2023]
Abstract
The observable responses of living systems to ionizing radiation depend on the level of biological organization studied. Understanding the relationships between the responses characteristic of the different levels of organization is of crucial importance. The main objective of the present study is to investigate how some cellular effects of radiation manifest at the tissue level by modeling mutation induction due to chronic exposure to inhaled radon progeny. For this purpose, a mathematical model of the bronchial epithelium was elaborated to quantify cell nucleus hits and cell doses. Mutagenesis was modeled considering endogenous as well as radiation-induced DNA damages and cell cycle shortening due to cell inactivation. The model parameters describing the cellular effects of radiation are obtained from experimental data. Cell nucleus hits, cell doses, and mutation induction were computed for the activity hot spots of the large bronchi at different exposures. Results demonstrate that the mutagenic effect of densely ionizing radiation is dominated by cell cycle shortening due to cell inactivation and not by DNA damages. This suggests that radiation burdens of non-progenitor cells play a significant role in mutagenesis in case of protracted exposures to densely ionizing radiation. Mutation rate as a function of dose rate exhibits a convex shape below a threshold. This threshold indicates the exhaustion of the tissue regeneration capacity of local progenitor cells. It is suggested that progenitor cell hyperplasia occurs beyond the threshold dose rate, giving a possible explanation of the inverse dose-rate effect observed in the epidemiology of lung cancer among uranium miners.
Collapse
Affiliation(s)
- Balázs G Madas
- Hungarian Academy of Sciences KFKI Atomic Energy Research Institute, Budapest, Hungary.
| | | |
Collapse
|
9
|
Farkas A, Hofmann W, Balásházy I, Szoke I, Madas BG, Moustafa M. Effect of site-specific bronchial radon progeny deposition on the spatial and temporal distributions of cellular responses. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:281-297. [PMID: 21327807 DOI: 10.1007/s00411-011-0357-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 01/30/2011] [Indexed: 05/30/2023]
Abstract
Inhaled short-lived radon progenies may deposit in bronchial airways and interact with the epithelium by the emission of alpha particles. Simulation of the related radiobiological effects requires the knowledge of space and time distributions of alpha particle hits and biological endpoints. Present modelling efforts include simulation of radioaerosol deposition patterns in a central bronchial airway bifurcation, modelling of human bronchial epithelium, generation of alpha particle tracks, and computation of spatio-temporal distributions of cell nucleus hits, cell killing and cell transformation events. Simulation results indicate that the preferential radionuclide deposition at carinal ridges plays an important role in the space and time evolution of the biological events. While multiple hits are generally rare for low cumulative exposures, their probability may be quite high at the carinal ridges of the airway bifurcations. Likewise, cell killing and transformation events also occur with higher probability in this area. In the case of uniform surface activities, successive hits as well as cell killing and transformation events within a restricted area (say 0.5 mm(2)) are well separated in time. However, in the case of realistic inhomogeneous deposition, they occur more frequently within the mean cycle time of cells located at the carinal ridge even at low cumulative doses. The site-specificity of radionuclide deposition impacts not only on direct, but also on non-targeted radiobiological effects due to intercellular communication. Incorporation of present results into mechanistic models of carcinogenesis may provide useful information concerning the dose-effect relationship in the low-dose range.
Collapse
Affiliation(s)
- Arpád Farkas
- Health and Environmental Physics Department, Hungarian Academy of Sciences KFKI Atomic Energy Research Institute, Konkoly Thege M. út 29-33, 1121, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
10
|
Szoke I, Farkas A, Balásházy I, Hofmann W. Stochastic aspects of primary cellular consequences of radon inhalation. Radiat Res 2009; 171:96-106. [PMID: 19138049 DOI: 10.1667/rr1364.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/25/2008] [Indexed: 11/03/2022]
Abstract
In this study, a composite, biophysical mechanism-based microdosimetric model was developed for the assessment of the primary cellular consequences of radon inhalation. Based on the concentration of radio-aerosols in the inhaled air and the duration of exposure, this mathematical approach allows the computation of the distribution of cellular burdens and the resulting distribution of cellular inactivation and oncogenic transformation probabilities within the epithelium of the human central airways. The composite model is composed of three major parts. The first part is a lung-particle interaction model applying computational fluid and particle dynamics (CFPD) methods. The second part is a lung dosimetry model that quantifies the cellular distribution of radiation exposure within the bronchial epithelium. The third part of the composite model is the unit-track-length model, which allows the prediction of the biological outcome of the exposure at the cellular level. Computations were made for different exposure durations for a miner working in a New Mexico uranium mine. The spatial pattern of the exposed cell nuclei along the epithelium, the distributions of single and multiple alpha-particle hits, the distributions of cell nucleus doses, and cell inactivation and cell transformation probabilities as a function of the number of inhalations (length of exposure) were investigated and compared for up to 500 inhalations.
Collapse
Affiliation(s)
- István Szoke
- Hungarian Academy of Sciences KFKI Atomic Energy Research Institute, Budapest, Hungary.
| | | | | | | |
Collapse
|