1
|
López-Martín E, Sueiro-Benavides R, Leiro-Vidal JM, Rodríguez-González JA, Ares-Pena FJ. Redox cell signalling triggered by black carbon and/or radiofrequency electromagnetic fields: Influence on cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176023. [PMID: 39244061 DOI: 10.1016/j.scitotenv.2024.176023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The capacity of environmental pollutants to generate oxidative stress is known to affect the development and progression of chronic diseases. This scientific review identifies previously published experimental studies using preclinical models of exposure to environmental stress agents, such as black carbon and/or RF-EMF, which produce cellular oxidative damage and can lead to different types of cell death. We summarize in vivo and in vitro studies, which are grouped according to the mechanisms and pathways of redox activation triggered by exposure to BC and/or EMF and leading to apoptosis, necrosis, necroptosis, pyroptosis, autophagy, ferroptosis and cuproptosis. The possible mechanisms are considered in relation to the organ, cell type and cellular-subcellular interaction with the oxidative toxicity caused by BC and/or EMF at the molecular level. The actions of these environmental pollutants, which affect everyday life, are considered separately and together in experimental preclinical models. However, for overall interpretation of the data, toxicological studies must first be conducted in humans, to enable possible risks to human health to be established in relation to the progression of chronic diseases. Further actions should take pollution levels into account, focusing on the most vulnerable populations and future generations.
Collapse
Affiliation(s)
- Elena López-Martín
- Department of Morphological Sciences, Santiago de Compostela, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Rosana Sueiro-Benavides
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José M Leiro-Vidal
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan A Rodríguez-González
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco J Ares-Pena
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Bellier PV, McGarr GW, Smiley S, McNamee JP. Effect of 1800 MHz radiofrequency field exposure on cytokine and signal transduction protein expression in differentiated THP-1 cells. Int J Radiat Biol 2024; 100:1594-1600. [PMID: 39249987 DOI: 10.1080/09553002.2024.2398090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE To evaluate the effects of 1800 MHz continuous wave (CW) and global system for mobile communications (GSM) modulated radiofrequency electromagnetic field (RFEMF) exposures on signal transduction (ST) protein and cytokine expression in differentiated human-derived monocytic THP-1 cells. MATERIALS AND METHODS THP-1 cells were differentiated into adherent macrophage-like cells using phorbol 12-myristate 13-acetate (PMA). Following differentiation, cells were exposed to 1800 MHz CW or GSM modulated RFEMF for 0.5, 4, or 24 h at a specific absorption rate (SAR) of 0 (sham) or 2.0 W/kg. Concurrent positive controls (lipopolysaccharide for cytokines; anisomycin for ST proteins) and negative controls were included in each experiment. The expression levels of cytokines (GM-CSF, IFN-γ, IL-1β, IL-6, IL-10, TNF-α) from culture media and phosphorylated and total ST proteins (CREB, JNK, NF-κB, p38, ERK1/2, Akt, p70S6k, STAT3, STAT5) from cell lysates were assessed using Milliplex magnetic bead array panels. RESULTS No consistent effect of RFEMF exposure was observed in differentiated THP-1 cells. A statistically significant effect of overall exposure condition was observed for IL-6 with GSM modulation (P = 0.042), but no difference between RFEMF and sham for any exposure condition remained following adjustment for multiple comparisons (P ≥ 0.128). No statistically significant effect of exposure condition was detected for any other cytokine evaluated with either of the RFEMF modulations (P ≥ 0.078). There were no statistically significant changes in expression levels for any of the ST proteins under any studied exposure condition (P ≥ 0.320). CONCLUSIONS In this study, no evidence of changes were observed in differentiated human derived THP-1 cells following exposure of up to 24 h to 1800 MHz RFEMF at SARs of 0 and 2.0 W/kg on the expression of ST proteins or cytokines.
Collapse
Affiliation(s)
- Pascale V Bellier
- Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada
| | - Gregory W McGarr
- Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sandy Smiley
- Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada
| | - James P McNamee
- Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
3
|
Torres-Ruiz M, Suárez OJ, López V, Marina P, Sanchis A, Liste I, de Alba M, Ramos V. Effects of 700 and 3500 MHz 5G radiofrequency exposure on developing zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169475. [PMID: 38199355 DOI: 10.1016/j.scitotenv.2023.169475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Telecommunications industries are rapidly deploying the fifth generation (5G) spectrum and there is public concern about the safety and health impacts of this type of Radio Frequency Radiation (RFR), in part because of the lack of comparable scientific evidence. In this study we have used a validated commercially available setting producing a uniform field to expose zebrafish embryos (ZFe) to unmodulated 700 and 3500 MHz frequencies. We have combined a battery of toxicity, developmental and behavioral assays to further explore potential RFR effects. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. ZFe were exposed for 1 and 4 h during the blastula period of development and endpoints evaluated up to 120 hours post fertilization (hpf). Our results show no effects on mortality, hatching or body length. However, we have demonstrated specific organ morphological effects, and behavioral effects in activity, anxiety-like behavior, and habituation that lasted in larvae exposed during the early embryonic period. A decrease in acetylcholinesterase activity was also observed and could explain some of the observed behavioral alterations. Interestingly, effects were more pronounced in ZFe exposed to the 700 MHz frequency, and especially for the 4 h exposure period. In addition, we have demonstrated that our exposure setup is robust, flexible with regard to frequency and power testing, and highly comparable. Future work will include exposure of ZFe to 5G modulated signals for different time periods to better understand the potential health effects of novel 5G RFR.
Collapse
Affiliation(s)
- Monica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Oscar J Suárez
- Radio Frequency Laboratory, Telecommunications General Secretary and Audiovisual Communication Services Ordenation, Madrid, Spain
| | - Victoria López
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Pablo Marina
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain
| | - Aránzazu Sanchis
- Non-Ionizing Radiation Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Isabel Liste
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Mercedes de Alba
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Victoria Ramos
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain.
| |
Collapse
|
4
|
Ergun DD, Ozsobaci NP, Yilmaz T, Ozcelik D, Kalkan MT. Assessing the effect of selenium on cyclin D1 level and nuclear factor kappa b activity in NIH/3T3 fibroblast cells at 2100 MHz electromagnetic field exposure. Electromagn Biol Med 2023; 42:123-132. [PMID: 37638990 DOI: 10.1080/15368378.2023.2252457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Although there are numerous studies on the health impacts of electromagnetic field (EMF) of mobile phone operation frequency 2100 MHz, the published works present contradicting results. Long-term exposure to mobile phone frequencies has unclear health hazards. Therefore, it is important to investigate the molecular mechanism of possible biological effects in mobile phone exposure and to determine the corresponding biological markers. Towards this end, this study was designed to assess the effect of 200 nM selenium (Se) on cell viability% [trypan blue], cell cycle biomarker [cyclin D1] and the transcription factor [nuclear factor kappa b (NF-κB)] in NIH/3T3 fibroblast cells when exposed to 2100 MHz mobile phone frequency. When 2100 MHz EMF was exposed to NIH/3T3 fibroblast cells, the cell viability% was reduced, whereas cyclin D1 level and NF-kB activity increased. Also we show that Se supplementation decreases the effects of 2100 MHz EMF on these parameters. Although future studies will be required to investigate the biological effects of EMF emitted by mobile phones, the results obtained here provide an insight into the molecular mechanisms and specifically underlying selenium's protective effect against 2100 MHz EMF exposure.
Collapse
Affiliation(s)
- Dilek Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Nural Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tuba Yilmaz
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Dervis Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mustafa Tunaya Kalkan
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
5
|
Yadav H, Singh R. Immunomodulatory role of non-ionizing electromagnetic radiation in human leukemiamonocytic cell line. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121843. [PMID: 37207815 DOI: 10.1016/j.envpol.2023.121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
In daily life, people are usually exposed to radiofrequency radiations (RFR). The effects of RFR on human physiology have been a major source of controversy since the WHO declared that these radiations are a type of environmental energy that interacts with the physiological functioning of the human body. The immune system provides internal protection and promotes long-term health and survival. However, the relevant research on the innate immune system and radiofrequency radiation is scant. In this connection, we hypothesized that innate immune responses would be influenced by exposure to non-ionizing electromagnetic radiation from mobile phones in a cell-specific and time-dependent manner. To analyze this hypothesis, human leukemia monocytic cell lines were exposed to 2318 MHz (MHz) RFR emitted by mobile phones at a power density of 0.224 W/m2 in a controlled manner for various time durations (15, 30, 45, 60, 90, and 120 min). Systematic studies on cell viability, nitric oxide (NO), superoxide (SO), pro-inflammatory cytokine production, and phagocytic assays were performed after the irradiation. The duration of exposure seems to have a substantial influence on the RFR-induced effects. It was noticed that after 30 min of exposure, the RFR dramatically enhanced the pro-inflammatory cytokine IL-1α level as well as reactive species such as NO and SO generation as compared to the control. In contrast, the RFR dramatically reduced the phagocytic activity of monocytes during 60 min of treatment when compared to the control. Interestingly, the irradiated cells restored their normal functioning until the final 120-min of exposure. Furthermore, mobile phone exposure had no influence on cell viability or TNF-α level. The results showed that RFR exhibits a time-dependent immune-modulatory role in the human leukemia monocytic cell line. Nevertheless, more research is needed to further determine the long-term effects and precise mechanism of action of RFR.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi-110054, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi-110054, India; Department of Environmental Science, Jamia Millia Islamia, Delhi- 110025, India.
| |
Collapse
|
6
|
Duzgun Ergun D, Doganer F, Koc G, Soyocak A, Pastaci Ozsobaci N, Ergun S. The relationship of 50 bp deletion in the promoter region of SOD1 gene with viscosity and trace elements in chronic gastritis with Helicobacter Pylori: A case study. J Trace Elem Med Biol 2022; 73:127039. [PMID: 35868167 DOI: 10.1016/j.jtemb.2022.127039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
The aim of research was to evaluate the superoxide dismutase-1 (SOD1) promoter region Insertion/Deletion (Ins/Del) gene variations in chronic gastritis patients infected with Helicobacter pylori (H. pylori), as well as the association between trace elements and viscosity. The study consisted 154 volunteer (18-65 age) with 107 H. pylori (+) and 47 (-). Biochemical parameters, whole blood viscosity (WBV), trace element levels and SOD1 promoter region Ins/Del gene variations were analyzed in blood samples provided from patients. It was determined that zinc (Zn), copper (Cu), iron (Fe) and magnesium (Mg) levels decreased whereas WBV, selenium (Se) and Cu/Zn ratio increased in H.pylori (+) chronic gastritis patients. The SOD1 50 bp Ins/Del gene polymorphism genotype and allele frequency distributions in H.pylori (+) and (-) chronic gastritis patients were not statistically significant. It was reported that Zn level decreased in H.pylori (+) patients with a deletion in at least one locus (Ins/Del+Del/Del), Se level increased. It has been found that the presence of H.pylori affects trace element metabolism and biochemical parameters in chronic gastritis patients. The 50 bp Ins/Del polymorphism in the promoter region of the SOD1 gene was shown to have no association with chronic gastritis. Investigation of different variants of the SOD1 gene in patients with gastritis will contribute to the determination of its role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- D Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| | - F Doganer
- Department of Biotechnology, Faculty of Arts and Science, Aksaray University, Aksaray, Turkey
| | - G Koc
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - A Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - N Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - S Ergun
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey; Department of General Surgery, Istanbul Avcılar Murat Koluk State Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Jagetia GC. Genotoxic effects of electromagnetic field radiations from mobile phones. ENVIRONMENTAL RESEARCH 2022; 212:113321. [PMID: 35508219 DOI: 10.1016/j.envres.2022.113321] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The use of wireless communication technology in mobile phones has revolutionized modern telecommunication and mobile phones have become so popular that their number exceeds the global population. Electromagnetic field radiations (EMR) are an integral part of wireless technology, which are emitted by mobile phones, mobile tower antennas, electric power stations, transmission lines, radars, microwave ovens, television sets, refrigerators, diagnostic, therapeutic, and other electronic devices. Manmade EMR sources have added to the existing burden of natural EMR human exposure arising from the Sun, cosmos, atmospheric discharges, and thunder storms. EMR including radiofrequency waves (RF) and extremely low-frequency radiation (ELF) has generated great interest as their short-term exposure causes headache, fatigue, tinnitus, concentration problems, depression, memory loss, skin irritation, sleep disorders, nausea, cardiovascular effects, chest pain, immunity, and hormonal disorders in humans, whereas long-term exposure to EMR leads to the development of cancer. The review has been written by collecting the information using various search engines including google scholar, PubMed, SciFinder, Science direct, EMF-portal, saferemr, and other websites from the internet. The main focus of this review is to delineate the mutagenic and genotoxic effects of EMR in humans and mammals. Numerous investigations revealed that exposure in the range of 0-300 GHz EMR is harmless as it did not increase micronuclei and chromosome aberrations. On the contrary, several other studies have demonstrated that exposure to EMR is genotoxic and mutagenic as it increases the frequency of micronuclei, chromosome aberrations, DNA adducts, DNA single and double strand breaks at the molecular level in vitro and in vivo. The EMR exposure induces reactive oxygen species and changes the fidelity of genes involved in signal transduction, cytoskeleton formation, and cellular metabolism.
Collapse
|
8
|
Prolonged Inhalation Exposure to Coal Dust on Irradiated Rats and Consequences. ScientificWorldJournal 2022; 2022:8824275. [PMID: 35153629 PMCID: PMC8828334 DOI: 10.1155/2022/8824275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
The purposes of this study were to research immune system changes and liver and lung tissues in irradiated rats after prolonged exposure to coal dust. A study was carried out on 30 male Wistar rats that were divided into 3 groups: group I, intact animals; group II, exposure to coal dust and 0.2 Gy γ-irradiation; and group III, combined exposure to 6 Gy γ-irradiation and coal dust. The combination of a low and sublethal dose of γ-irradiation with coal dust leads to a significant change in immunity at the remote period. Particularly, the increase in radioactivity at the combined effect causes weakening of phagocytosis, and reduction in T lymphocytes by a factor of 2, immunoglobulin imbalance, and cytokine dysfunction develop secondary immune failure. During prolonged inhalation with coal dust of irradiated animals with the dose of 0.2 Gy, fibrosis and perivascular sclerosis of the bronchial wall of the lungs are formed, and perivascular fibrosis is formed in the liver. The increase in exposure dose up to 6 Gy in combination with coal, in the distant period, caused pulmonary hypertension amid hypertrophy of light arterial vessels and fibrous changes in arteriole, and destructive changes and collection necrosis develop in liver parenchyma. In the case of dust radiation synergy, the increase in doses leads to a significant immune deficiency, which occurs according to the “dose effect” principle; increases damage to animal tissues; and leads to liver tissue necrosis, pulmonary fibrosis, and pulmonary hypertension.
Collapse
|
9
|
Duzgun Ergun D, Pastaci Ozsobaci N, Yilmaz T, Ozcelik D, Kalkan MT. Zinc affects nuclear factor kappa b and DNA methyltransferase activity in C3H cancer fibroblast cells induced by a 2100 MHz electromagnetic field. Electromagn Biol Med 2022; 41:93-100. [PMID: 34994293 DOI: 10.1080/15368378.2021.2019760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The use of mobile phones is becoming widespread with the development of technology, and as a result, its effects on human health are becoming more and more important every day. Studies have reported that the electromagnetic field (EMF) emitted by mobile phones may have adverse effects on the biological systems. In order to evaluate the effect of zinc (Zn) on C3H cancer fibroblast cells exposed to 2100 MHz EMF, we analyzed cell viability%, nuclear factor kappa b (NF-κB) and DNA methyltransferase (DNMT) activities. Cells were divided to following groups: Control, sham control, 2100 MHz EMF, 50 µM Zn + 2100 MHz EMF, 100 µM Zn + 2100 MHz EMF, and 200 µM Zn + 2100 MHz EMF for 2 h. We measurement cell viability, NF-κB and DNMT activities. There was increased cell viability % in the 2100 MHz EMF group compared to the control group, while the cell viability % was decreased in the 50, 100 and 200 µM Zn + 2100 MHz EMF groups compared to 2100 MHz EMF. NF-κB and DNMT activities were a significant increase in the 2100 MHz EMF group compared to the control group, although were statistically decreased in the 50, 100 and 200 µM Zn + 2100 MHz EMF groups compared to the 2100 MHz EMF group. Our results demonstrate that 2100 MHz EMF exposure in cancer fibroblast cells induce NF-κB and DNMT activities, whereas zinc supplementation reduce NF-κB and DNMT activities-induced 2100 MHz EMF.
Collapse
Affiliation(s)
- D Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - N Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - T Yilmaz
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| | - D Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - M T Kalkan
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
10
|
Chayakova A, Myrzakhanova M, Rakhyzhanova SO, Kydyrmoldina A, Omarkhanova E, Zhetpisbayev BA, Utegenova A, Chayakova A. State of Immunological Reactivity of Rat’s Body after Exposure to Different Doses of γ-Radiation in a Long Period and their Offense of the 1st Generation. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract
BACKGROUND: Recently, the problem of changes in immunological reactivity has become important with the growth of immunodeficiency states of a different nature. [4]. High radiosensitivity of the immune system, its stability in time and the irreversibility of some post-radiation changes can contribute to the development of long-term effects of radiation [2,3,6]. One of the tasks of modern medicine and biology is to study the effect of chronic or fractionated ionizing effects on the body's immune system both in the early and late periods of irradiation and their 1st generation descendants [1,2,3,11,12]. Therefore, it is necessary to study the long-term effects of sublethal and fractionated effects of g-radiation on the immunological reactivity of the organism, nonspecific phagocytic resistance and their 1st generation descendants.
AIM: The aim of this study was to study the long-term effects of sublethal and fractionated effects of g-radiation on the immunological reactivity of the organism, nonspecific phagocytic resistance and their 1st generation descendants..
METHODS: 7 series of experiments were performed on 105 white outbred sexually mature rats. 1-series intact (n=15), 2nd series - (n = 15) irradiated with a sublethal dose of 6 Gr. (1 month), 3rd series - irradiated with a sublethal dose (3 months, n = 20), 4 - descendants 1 - generations after sublethal dose, 5 series - irradiated with a fractionated dose (1 month), 6 series - irradiated with a fractionated dose (3 months), 7 - descendants of the 1st generation after fractionated -irradiation. Each series used 15 animals. Irradiation of animals 2 - 3 - 4 series was carried out on the Russian radiotherapy device "Agat-RM" -rays 60Co, the dose of sublethal irradiation is 6 Gr. Irradiation of animals of 5-6-7 series was carried out on the Russian radiotherapy device "Agat-RM" with 60Co-rays with topometric and dosimetric preparation of experimental animals, which facilitates the administration of a fractionated dose of 2 Gr. to animals three times within 3 weeks.
RESULTS: In the long-term period after fractionated g-irradiation in the T-system of immunity, the following changes occur: against the background of an increase in the total number of lymphocytes, there is a decrease in the pool of CD3 +, CD4 + lymphocytes, immunoregulatory index, normalization of the lymphokine-producing ability of lymphocytes and a decrease in the pool of CD8 + lymphocytes. In the long-term period after fractionated g-irradiation in the humoral link of immunity, an increase in the absolute amount of CD19 + by 3.5 times was noted, which significantly exceeded the indicators of both control and intact animals. The percentage of this pool of cells exceeded the data of intact ones by 1.7 times. In the studied time period, the antibody-producing ability in the spleen increased from 22 ± 1.3 to 45 ± 2.6, without reaching, however, the level of intact animals. At the same time, there was a significant decrease in the suppression index to 13% (P<0.001) and the CIC concentration by 14 times (P<0.001) in the blood serum. The indicators of F/n and NST-test were high by 1.43 and 2.46 times, respectively. So, in the long-term period after exposure to a fractionated dose of g-radiation, the nonspecific phagocytic resistance of the organism is increased.
CONCLUSIONS: The tension in the humoral link of immunity is manifested by a decrease in the quantitative and qualitative indicators and an increase in the functional and metabolic activity of neutrophils.
Collapse
|
11
|
Sueiro-Benavides RA, Leiro-Vidal JM, Salas-Sánchez AÁ, Rodríguez-González JA, Ares-Pena FJ, López-Martín ME. Radiofrequency at 2.45 GHz increases toxicity, pro-inflammatory and pre-apoptotic activity caused by black carbon in the RAW 264.7 macrophage cell line. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142681. [PMID: 33071139 DOI: 10.1016/j.scitotenv.2020.142681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental factors such as air pollution by particles and/or electromagnetic fields (EMFs) are studied as harmful agents for human health. We analyzed whether the combined action of EMF with fine and coarse black carbon (BC) particles induced cell damage and inflammatory response in RAW 264.7 cell line macrophages exposed to 2.45 GHz in a gigahertz transverse electromagnetic (GTEM) chamber at sub-thermal specific absorption rate (SAR) levels. Radiofrequency (RF) dramatically increased BC-induced toxicity at high doses in the first 24 h and toxicity levels remained high 72 h later for all doses. The increase in macrophage phagocytosis induced after 24 h of RF and the high nitrite levels obtained by stimulation with lipopolysaccharide (LPS) endotoxin 24 and 72 h after radiation exposure suggests a prolongation of the innate and inflammatory immune response. The increase of proinflammatory cytokines tumor necrosis factor-α, after 24 h, and of interleukin-1β and caspase-3, after 72 h, indicated activation of the pro-inflammatory response and the apoptosis pathways through the combined effect of radiation and BC. Our results indicate that the interaction of BC and RF modifies macrophage immune response, activates apoptosis, and accelerates cell toxicity, by which it can activate the induction of hypersensitivity reactions and autoimmune disorders.
Collapse
Affiliation(s)
- Rosa Ana Sueiro-Benavides
- Research Institute on Chemical and Biological Analysis, Dept. of Microbiology and Parasitology, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Jose Manuel Leiro-Vidal
- Research Institute on Chemical and Biological Analysis, Dept. of Microbiology and Parasitology, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Aarón Ángel Salas-Sánchez
- CRETUS Institute, Dept. Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain; ELEDIA@UniTN - DISI - University of Trento, 38123, Trentino-Alto Adige, Italy.
| | - J Antonio Rodríguez-González
- CRETUS Institute, Dept. Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Francisco J Ares-Pena
- CRETUS Institute, Dept. Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - M Elena López-Martín
- CRETUS Institute, Dept. Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Schuermann D, Mevissen M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int J Mol Sci 2021; 22:ijms22073772. [PMID: 33917298 PMCID: PMC8038719 DOI: 10.3390/ijms22073772] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Concomitant with the ever-expanding use of electrical appliances and mobile communication systems, public and occupational exposure to electromagnetic fields (EMF) in the extremely-low-frequency and radiofrequency range has become a widely debated environmental risk factor for health. Radiofrequency (RF) EMF and extremely-low-frequency (ELF) MF have been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). The production of reactive oxygen species (ROS), potentially leading to cellular or systemic oxidative stress, was frequently found to be influenced by EMF exposure in animals and cells. In this review, we summarize key experimental findings on oxidative stress related to EMF exposure from animal and cell studies of the last decade. The observations are discussed in the context of molecular mechanisms and functionalities relevant to health such as neurological function, genome stability, immune response, and reproduction. Most animal and many cell studies showed increased oxidative stress caused by RF-EMF and ELF-MF. In order to estimate the risk for human health by manmade exposure, experimental studies in humans and epidemiological studies need to be considered as well.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
- Correspondence: (D.S.); (M.M.)
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, CH-3012 Bern, Switzerland
- Correspondence: (D.S.); (M.M.)
| |
Collapse
|
13
|
Poque E, Ruigrok HJ, Arnaud-Cormos D, Habauzit D, Chappe Y, Martin C, De Gannes FP, Hurtier A, Garenne A, Lagroye I, Le Dréan Y, Lévêque P, Percherancier Y. Effects of radiofrequency field exposure on proteotoxic-induced and heat-induced HSF1 response in live cells using the bioluminescence resonance energy transfer technique. Cell Stress Chaperones 2021; 26:241-251. [PMID: 33067759 PMCID: PMC7736596 DOI: 10.1007/s12192-020-01172-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/09/2023] Open
Abstract
As of today, only acute effects of RF fields have been confirmed to represent a potential health hazard and they are attributed to non-specific heating (≥ 1 °C) under high-level exposure. Yet, the possibility that environmental RF impact living matter in the absence of temperature elevation needs further investigation. Since HSF1 is both a thermosensor and the master regulator of heat-shock stress response in eukaryotes, it remains to assess HSF1 activation in live cells under exposure to low-level RF signals. We thus measured basal, temperature-induced, and chemically induced HSF1 trimerization, a mandatory step on the cascade of HSF1 activation, under RF exposure to continuous wave (CW), Global System for Mobile (GSM), and Wi-Fi-modulated 1800 MHz signals, using a bioluminescence resonance energy transfer technique (BRET) probe. Our results show that, as expected, HSF1 is heat-activated by acute exposure of transiently transfected HEK293T cells to a CW RF field at a specific absorption rate of 24 W/kg for 30 min. However, we found no evidence of HSF1 activation under the same RF exposure condition when the cell culture medium temperature was fixed. We also found no experimental evidence that, at a fixed temperature, chronic RF exposure for 24 h at a SAR of 1.5 and 6 W/kg altered the potency or the maximal capability of the proteasome inhibitor MG132 to activate HSF1, whatever signal used. We only found that RF exposure to CW signals (1.5 and 6 W/kg) and GSM signals (1.5 W/kg) for 24 h marginally decreased basal HSF1 activity.
Collapse
Affiliation(s)
- Emmanuelle Poque
- CNRS, Bordeaux INP, CBMN laboratory, UMR5248, Bordeaux University, F-33607, Pessac, France
| | - Hermanus J Ruigrok
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - Delia Arnaud-Cormos
- CNRS, XLIM, UMR 7252, Limoges University, F-87000, Limoges, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Denis Habauzit
- Institut de Recherche en Santé, Environnement et Travail (IRSET) - UMR_S 1085, Rennes University, F-35000, Rennes, France
| | - Yann Chappe
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - Catherine Martin
- Institut de Recherche en Santé, Environnement et Travail (IRSET) - UMR_S 1085, Rennes University, F-35000, Rennes, France
| | | | - Annabelle Hurtier
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - André Garenne
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - Isabelle Lagroye
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
- Paris Sciences et Lettres Research University, F-75006, Paris, France
| | - Yves Le Dréan
- Institut de Recherche en Santé, Environnement et Travail (IRSET) - UMR_S 1085, Rennes University, F-35000, Rennes, France
| | - Philippe Lévêque
- CNRS, XLIM, UMR 7252, Limoges University, F-87000, Limoges, France
| | - Yann Percherancier
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France.
| |
Collapse
|