1
|
Zheng Y, Liu Q, Zhao Y, Qi Y, Dong L. Design of a 1 × 4 micro-magnetic stimulation device and its targeted, coordinated regulation on LTP of Schaffer-CA1 in the hippocampus of rats. Methods 2024; 229:49-60. [PMID: 38880432 DOI: 10.1016/j.ymeth.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024] Open
Abstract
Magnetic technology has been a hotspot of neuromodulation research in recent years. However, magnetic coil is limited by their size, and it is impossible to realize precise targeted magnetic stimulation to the target area at the cellular scale. To this end, this study designs a 1 × 4 array micro-magnetic stimulation (μMS) device with four sub-millimeter-sized elements, enabling precise magnetic stimulation of the CA1-CA3-DG tri-synaptic positions in the rat hippocampal region. First, it is determined that 70 KHz/2 mT/1 min magnetic stimulation parameter has a modulatory effect on the long-term potentiation (LTP) of Schaffer-CA1 in rat hippocampus. Then, a 1 × 4 array μMS device is used to perform magnetic stimulation at 70 KHz/2 mT/1 min, targeting the CA1, CA3, and DG regions individually with single-point magnetic stimulation; and multi-region magnetic stimulation is applied to the double-point targeting regions of CA1-CA3, CA1-DG, and CA3-DG, as well as the triple-point targeting region of CA1-CA3-DG, so as to investigate the regulation of LTP by single-region magnetic stimulation and multi-region magnetic stimulation. The experimental results indicate that, in the case of single-region magnetic stimulation, the magnitude of the increase in LTP in the CA1 region is the greatest, followed by the CA3 region, while the effect of magnetic stimulation on the DG region is less pronounced. In multi-region magnetic stimulation, synergistic magnetic stimulation of the three-point CA1-CA3-DG results in a greater increase in LTP compared to stimulation of two individual areas, and the enhancement of LTP induction with multi-region magnetic stimulation surpasses that of single-region stimulation. This study has implications for the collaborative targeted magnetic stimulation application of arrayed micro-magnetic devices.
Collapse
Affiliation(s)
- Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, China.
| | - Qiwen Liu
- School of Control Science and Engineering, Tiangong University, Tianjin, China
| | - Yuhang Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Yenan Qi
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Lei Dong
- School of Life Sciences, Tiangong University, Tianjin, China; Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Dong L, Xia P, Tian L, Tian C, Zhao W, Zhao L, Duan J, Zhao Y, Zheng Y. A Review of Aspects of Synaptic Plasticity in Hippocampus via mT Extremely Low-Frequency Magnetic Fields. Bioelectromagnetics 2023; 44:63-70. [PMID: 36786476 DOI: 10.1002/bem.22437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/20/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
The subthreshold magnetic modulation technique stimulates cells with mT extremely low-frequency magnetic fields (ELF-MFs), which are insufficient to induce neuronal action potentials. Although they cannot directly induce resting neurons to discharge, mT magnetic stimulation can regulate the excitability of the nervous system, which regulates learning and memory by some unknown mechanisms. Herein, we describe the regulation of mT ELF-MFs with different parameters on synaptic plasticity in hippocampal neurons. Additionally, we summarize the latest research on the possible mechanism of the effect of ELF-MFs on synaptic plasticity. Some studies have shown that ELF-MFs are able to inhibit long-term potentiation (LTP) by increasing concentration of intracellular Ca2+ concentration ([Ca2+ ]i ), as well as concentration of reactive oxygen species. The research in this paper has significance for the comprehensive understanding of relevant neurological mechanisms of learning and memory by mT ELF-MFs stimulation. However, more high-quality research is necessary to determine the regulatory mechanism of mT ELF-MFs on synaptic plasticity in order to optimize this technique as a treatment for neurological diseases. © 2023 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Pei Xia
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Chunxiao Tian
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Wenjun Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Ling Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Jiakang Duan
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Yuhan Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, China
| |
Collapse
|
3
|
Jin Z, Dong L, Tian L, Zhou M, Zheng Y. Regulation of LTP at rat hippocampal Schaffer-CA1 in vitro by musical rhythmic magnetic fields generated by red-pink (soothing) music tracks. Int J Radiat Biol 2022; 99:439-445. [PMID: 35759248 DOI: 10.1080/09553002.2022.2094022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Music therapy, like red-pink (soothing) music, is an important treatment for neurological disorders associated with learning and memory. Magnetic fields have been proved to have a similar regulating effect. However, the effect of magnetic fields with musical rhythm generated by the combination of the two has not been confirmed. This study aimed to investigate the regulation of magnetic stimulation with music rhythm on LTP (long-term potentiation) of Schaffer-CA1. MATERIALS AND METHODS This article selected three sorts of music tracks in different frequencies (music track (1) Turkish March, music track (2) Moonlight Sonata, music track (3) Funeral March) and four sorts of pure sinusoidal tracks of four different harmonic frequency (music track (4) the frequency is 3500 Hz; music track (5) the frequency is 2500 Hz; music track (6) the frequency is 1500 Hz; music track (7) the frequency is 500 Hz). These music tracks are converted into analog signals by the external sound card and power amplifier and fed into a homemade coil that meets the demand for this frequency bandwidth. The coil can generate seven sorts of time-varying magnetic fields with musical rhythm with a mean intensity of about 2 mT. We used multi-electrode array (MEA) to record the LTP signals of Schaffer-CA1 synaptic induced by seven sorts of musical rhythmic magnetic fields and analyze the regulation of them. RESULTS The musical rhythmic magnetic fields generated by track 1 and track 2 have a remarkable enhancing effect on the amplitude of fEPSPs (field excitatory postsynaptic potentials) (p < .05), and these effects intensify with the increase of frequency. Nevertheless, there is no significant enhancing effect on LTP of the rhythmic magnetic field generated by track 3 (p > .05). The sinusoidal magnetic fields generated by track 4 and track 5 have an enhancing effect on the amplitude of fEPSPs (p < .05), and the enhancement is better than track 1 and track 2. The sinusoidal magnetic fields generated by track 6 and track 7 have an inhibiting effect (p < .05). CONCLUSION We found that the enhancing effect of musical rhythmic magnetic fields generated by track 1 was the most significant. The frequency of 1500 Hz could be a turning-point frequency in the regulation of magnetic field on LTP.
Collapse
Affiliation(s)
- Zijia Jin
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Lei Dong
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Mei Zhou
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, China
| |
Collapse
|
4
|
Zheng Y, Zhao L, Dong L, Tian C, Xia P, Jin Z. The Time-Dependence of Three Different Modes of ELF-EMF Stimulation on LTP at Schaffer Collateral-CA1 Synapses. Bioelectromagnetics 2021; 42:538-549. [PMID: 34449888 DOI: 10.1002/bem.22369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 11/11/2022]
Abstract
Long-term potentiation (LTP) is considered the cellular basis of learning and memory. Extremely low-frequency electromagnetic fields (ELF-EMFs) are neuromodulation tools for regulating LTP. However, the temporal effects of short-term ELF-EMF stimulation on LTP are not yet known. In this study, we evaluated the time-dependent effects of 15 Hz/2 mT ELF-EMF stimulation on LTP at the Schaffer collateral-CA1 (SC-CA1) synapses in Sprague-Dawley rats. Hippocampal slices were exposed to three different modes of ELF-EMFs (sinusoidal, single-frequency pulse, and rhythm pulse) and durations (10, 20, 40, and 60 s). The baseline was recorded for 20 min and field excitatory postsynaptic potential (fEPSP) was recorded for 60 min using multi-electrode arrays (MEA) after plasticity induction using 100 Hz electrical high-frequency stimulation (HFS). Compared to the control group, the LTP decreased under three different magnetic fields and was proportional to time; that is, the longer the time, the greater the inhibition. We also compared the three magnetic fields and showed that the continuous sinusoidal magnetic field had the largest inhibitory rate of LTP, while pulsed and rhythm pulsed magnetic fields were similar. We showed that different modes of ELF-EMF stimulation had a time-dependent effect on LTP at Schaffer collateral-CA1 synapses, which provides experimental evidence for the treatment of related neurological diseases. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Ling Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
| | - Chunxiao Tian
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Pei Xia
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Zijia Jin
- School of Life Sciences, Tiangong University, Tianjin, China
| |
Collapse
|
5
|
Dong L, Li G, Gao Y, Lin L, Zheng Y, Cao XB. Exploring the form- And time-dependent effect of low-frequency electromagnetic fields on maintenance of hippocampal long-term potentiation. Eur J Neurosci 2020; 52:3166-3180. [PMID: 32065697 DOI: 10.1111/ejn.14705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Low-frequency electromagnetic field (LF-EMF) stimulation is an emerging neuromodulation tool that is attracting more attention because of its non-invasive and well-controlled characteristics. However, the effect of different LF-EMF features including the forms and the time of addition on neuronal activity has not been completely understood. In this study, we used multi-electrode array (MEA) systems to develop a flexible in vitro magnetic stimulation device with plug-and-play features that allows for real-time delivery of LF-EMFs to biological tissues. Crucially, the method enables different forms of LF-EMF to be added at any time to a long-term potentiation (LTP) experiment without interrupting the process of LTP induction. We demonstrated that the slope of field excitatory postsynaptic potentials (fEPSPs) decreased significantly under post or priming uninterrupted sine LF-EMFs. The fEPSPs slope would continue to decline significantly when LF-EMFs were added two times with a 20-min interval. Paired-pulse ratio (PPR) was analyzed and the results reflected that LF-EMFs induced LTP was expressed postsynaptically. The results of pharmacological experiments indicated that AMPA receptor activity was involved in the process of LTP loss caused by post-LF-EMFs. Moreover, the effect of priming sine or Quadripulse stimulation (QPS)-patterned LF-EMFs depended on the time interval between the end of LF-EMF and the beginning of baseline recording. Interestingly, the effect of sine LF-EMFs on LTP would not disappear within 120 min, while the impact of QPS-patterned LF-EMFs on LTP might disappear after 90 min. These results indicated that LF-EMF might have a form- and time-dependent effect on LTP.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin, China
| | - Yang Gao
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin, China
| | - Yu Zheng
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, China
| | | |
Collapse
|