1
|
Kooshki L, Mahdavi P, Fakhri S, Akkol EK, Khan H. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors 2022; 48:359-383. [PMID: 34724274 DOI: 10.1002/biof.1799] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Anticancer drugs are not purely effective because of their toxicity, side effects, high cost, inaccessibility, and associated resistance. On the other hand, cancer is a complex public health problem that could intelligently adopt different signaling pathways and alter the body's metabolism to escape from the immune system. One of the cancer strategies to metastasize is modifying pH in the tumor microenvironment, ranging between 6.5 and 6.9. As a powerful determiner, lactate is responsible for this acidosis. It is involved in immune stimulation, including innate and adaptive immunity, apoptotic-related factors (Bax/Bcl-2, caspase), and glycolysis pathways (e.g., GLUT-1, PKM2, PFK, HK2, MCT-1, and LDH). Lactate metabolism, in turn, is interconnected with several dysregulated signaling mediators, including PI3K/Akt/mTOR, AMPK, NF-κB, Nrf2, JAK/STAT, and HIF-1α. Because of lactate's emerging and critical role, targeting lactate production and its transporters is important for preventing and managing tumorigenesis. Hence, exploring and developing novel promising anticancer agents to minimize human cancers is urgent. Based on numerous studies, natural secondary metabolites as multi-target alternative compounds with health-promoting properties possess more high effectiveness and low side effects than conventional agents. Besides, the mechanism of multi-targeted natural sources is related to lactate production and cancer-associated cross-talked factors. This review focuses on targeting the lactate metabolism/transporters, and lactate-associated mediators, including glycolytic pathways. Besides, interconnected mediators to lactate metabolism are also targeted by natural products. Accordingly, plant-derived secondary metabolites are introduced as alternative therapies in combating cancer through modulating lactate metabolism and glycolytic pathways.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
2
|
Bayliak MM, Mosiichuk NM, Sorochynska OM, Kuzniak OV, Sishchuk LO, Hrushchenko AO, Semchuk AO, Pryimak TV, Vasylyk YV, Gospodaryov DV, Storey KB, Garaschuk O, Lushchak VI. Middle aged turn point in parameters of oxidative stress and glucose catabolism in mouse cerebellum during lifespan: minor effects of every-other-day fasting. Biogerontology 2021; 22:315-328. [PMID: 33786674 DOI: 10.1007/s10522-021-09918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
The cerebellum is considered to develop aging markers more slowly than other parts of the brain. Intensification of free radical processes and compromised bioenergetics, critical hallmarks of normal brain aging, may be slowed down by caloric restriction. This study aimed to evaluate the intensity of oxidative stress and the enzymatic potential to utilize glucose via glycolysis or the pentose phosphate pathway (PPP) in the cerebellum of mice under ad libitum versus every-other-day fasting (EODF) feeding regimens. Levels of lipid peroxides, activities of antioxidant and key glycolytic and PPP enzymes were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice. The cerebellum showed the most dramatic increase in lipid peroxide levels, antioxidant capacity and PPP key enzyme activities and the sharpest decline in the activities of key glycolytic enzymes under transition from young to middle age but these changes slowed when transiting from middle to old age. A decrease in the activity of the key glycolytic enzyme phosphofructokinase was accompanied by a concomitant increase in the activities of hexokinase and glucose-6-phosphate dehydrogenase (G6PDH), which may suggest that during normal cerebellar aging glucose metabolism shifts from glycolysis to the pentose phosphate pathway. The data indicate that intensification of free radical processes in the cerebellum occurred by middle age and that activation of the PPP together with increased antioxidant capacity can help to resist these changes into old age. However, the EODF regime did not significantly modulate or alleviate any of the metabolic processes studied in this analysis of the aging cerebellum.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana M Sorochynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana V Kuzniak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Lesia O Sishchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Anastasiia O Hrushchenko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Alina O Semchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Taras V Pryimak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Yulia V Vasylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074, Tübingen, Germany
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|