1
|
Moloudi K, Azariasl S, Abrahamse H, George BP, Yasuda H. Expected role of photodynamic therapy to relieve skin damage in nuclear or radiological emergency: Review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104517. [PMID: 39032581 DOI: 10.1016/j.etap.2024.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Nuclear and radiological accidents can occur due to poor management, in transportation, radiation therapy and nuclear wards in hospitals, leading to extreme radiation exposure and serious consequences for human health. Additionally, in many of previous radiological accidents, skin damage was observed in patients and survivors due to the high radiation exposure. However, as part of a medical countermeasures in a nuclear/radiological emergency, it is critical to plan for the treatment of radiation-induced skin damage. Hence, the new, non-invasive technology of photodynamic therapy (PDT) is projected to be more effectively used for treating skin damage caused by high-dose radiation. PDT plays an important role in treating, repairing skin damage and promoting wound healing as evidenced by research. This review, highlighted and recommended potential impacts of PDT to repair and decrease radiation-induced skin tissue damage. Moreover, we have suggested some photosensitizer (PS) agent as radio-mitigator drugs to decrease radiobiological effects.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Samayeh Azariasl
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa.
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| |
Collapse
|
2
|
Li S, Cai TJ, Lu X, Tian M, Liu QJ. Effects of cyclophosphamide and mitomycin C on radiation-induced transcriptional biomarkers in human lymphoblastoid cells. Int J Radiat Biol 2023; 99:1948-1960. [PMID: 37530590 DOI: 10.1080/09553002.2023.2241907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Ionizing radiation (IR)-induced transcriptional changes are considered a potential biodosimetry for dose evaluation and health risk monitoring of acute or chronic radiation exposure. It is crucial to understand the impact of confounding factors on the radiation-responsive gene expressions for accurate and reproducible dose assessment. This study aims to explore the potential influence of exposures to chemotherapeutic agents such as cyclophosphamide (CP) and mitomycin C (MMC) on IR-induced transcriptional biomarkers. METHODS The human B lymphoblastoid cells (AHH-1) were exposed to 0, 20, 50, 100, 200 and 500 μg/ml CP or 0, 0.025, 0.05, 0.1 and 1 μg/ml MMC, respectively. The appropriate concentrations of CP and MMC were added for 1 h before irradiation with 0, 2, 4 and 6 Gy of 60Co γ-rays at a dose rate of 1 Gy/min. Cell viability was evaluated by CCK-8 assay. The gene expression responses of 18 radiation-induced transcriptional biomarkers were examined at 24 h after exposures to CP and MMC, respectively. The expression levels of five crucial DNA interstrand crosslinks (ICLs) repair genes were also evaluated. The biodosimetry models were established based on the specific radiation-responsive gene combinations. RESULTS The baseline transcriptional levels of the 18 selected genes were slightly affected by CP treatment in the absence of IR, while the transcript responses to IR could be inhibited as the concentration of CP up to 50 μg/ml. MMC treatment up-regulated the background levels in most radiation-responsive gene expressions. Of 18 genes, only the relative mRNA expression levels of CDKN1A and BBC3 were repressed after treatment with IR and MMC in combination. The relative mRNA level of RAD51 was significantly up-regulated after exposure to CP, while the expression of FANCD2, RAD51 and BLM showed an overall increase in response to MMC treatment. After irradiation, the relative mRNA expression levels of FANCD2, BRCA2 and RAD51 exhibited dose-dependent increases in IR alone and MMC treatment groups. In addition, the biodosimetry models were established using 2-4 radiation-responsive genes based on different radiation exposure scenarios. CONCLUSION Our findings suggested that IR-induced gene expression changes were slightly affected after exposure to a relatively low concentration of CP and MMC. Gene expression combinations might improve the broad applicability of transcriptional biodosimetry across diverse radiation exposures.
Collapse
Affiliation(s)
- Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| |
Collapse
|
3
|
Cheung HC, De Louche C, Komorowski M. Artificial Intelligence Applications in Space Medicine. Aerosp Med Hum Perform 2023; 94:610-622. [PMID: 37501303 DOI: 10.3357/amhp.6178.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
INTRODUCTION:During future interplanetary space missions, a number of health conditions may arise, owing to the hostile environment of space and the myriad of stressors experienced by the crew. When managing these conditions, crews will be required to make accurate, timely clinical decisions at a high level of autonomy, as telecommunication delays and increasing distances restrict real-time support from the ground. On Earth, artificial intelligence (AI) has proven successful in healthcare, augmenting expert clinical decision-making or enhancing medical knowledge where it is lacking. Similarly, deploying AI tools in the context of a space mission could improve crew self-reliance and healthcare delivery.METHODS: We conducted a narrative review to discuss existing AI applications that could improve the prevention, recognition, evaluation, and management of the most mission-critical conditions, including psychological and mental health, acute radiation sickness, surgical emergencies, spaceflight-associated neuro-ocular syndrome, infections, and cardiovascular deconditioning.RESULTS: Some examples of the applications we identified include AI chatbots designed to prevent and mitigate psychological and mental health conditions, automated medical imaging analysis, and closed-loop systems for hemodynamic optimization. We also discuss at length gaps in current technologies, as well as the key challenges and limitations of developing and deploying AI for space medicine to inform future research and innovation. Indeed, shifts in patient cohorts, space-induced physiological changes, limited size and breadth of space biomedical datasets, and changes in disease characteristics may render the models invalid when transferred from ground settings into space.Cheung HC, De Louche C, Komorowski M. Artificial intelligence applications in space medicine. Aerosp Med Hum Perform. 2023; 94(8):610-622.
Collapse
|
4
|
M’Kacher R, Colicchio B, Junker S, El Maalouf E, Heidingsfelder L, Plesch A, Dieterlen A, Jeandidier E, Carde P, Voisin P. High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview. Int J Mol Sci 2023; 24:ijms24065699. [PMID: 36982772 PMCID: PMC10054499 DOI: 10.3390/ijms24065699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
- Correspondence: ; Tel.: +33-160878918
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Elie El Maalouf
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| | | | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, D-68804 Altlussheim, Germany
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 69093 Mulhouse, France
| | - Patrice Carde
- Department of Hematology, Institut Gustave Roussy, 94804 Villejuif, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| |
Collapse
|
5
|
Biomarkers to Predict Lethal Radiation Injury to the Rat Lung. Int J Mol Sci 2023; 24:ijms24065627. [PMID: 36982722 PMCID: PMC10053311 DOI: 10.3390/ijms24065627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, there are no biomarkers to predict lethal lung injury by radiation. Since it is not ethical to irradiate humans, animal models must be used to identify biomarkers. Injury to the female WAG/RijCmcr rat has been well-characterized after exposure to eight doses of whole thorax irradiation: 0-, 5-, 10-, 11-, 12-, 13-, 14- and 15-Gy. End points such as SPECT imaging of the lung using molecular probes, measurement of circulating blood cells and specific miRNA have been shown to change after radiation. Our goal was to use these changes to predict lethal lung injury in the rat model, 2 weeks post-irradiation, before any symptoms manifest and after which a countermeasure can be given to enhance survival. SPECT imaging with 99mTc-MAA identified a decrease in perfusion in the lung after irradiation. A decrease in circulating white blood cells and an increase in five specific miRNAs in whole blood were also tested. Univariate analyses were then conducted on the combined dataset. The results indicated that a combination of percent change in lymphocytes and monocytes, as well as pulmonary perfusion volume could predict survival from radiation to the lungs with 88.5% accuracy (95% confidence intervals of 77.8, 95.3) with a p-value of < 0.0001 versus no information rate. This study is one of the first to report a set of minimally invasive endpoints to predict lethal radiation injury in female rats. Lung-specific injury can be visualized by 99mTc-MAA as early as 2 weeks after radiation.
Collapse
|
6
|
Factors to Consider for the Correct Use of γH2AX in the Evaluation of DNA Double-Strand Breaks Damage Caused by Ionizing Radiation. Cancers (Basel) 2022; 14:cancers14246204. [PMID: 36551689 PMCID: PMC9776434 DOI: 10.3390/cancers14246204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
People exposed to ionizing radiation (IR) both for diagnostic and therapeutic purposes is constantly increasing. Since the use of IR involves a risk of harmful effects, such as the DNA DSB induction, an accurate determination of this induced DNA damage and a correct evaluation of the risk-benefit ratio in the clinical field are of key relevance. γH2AX (the phosphorylated form of the histone variant H2AX) is a very early marker of DSBs that can be induced both in physiological conditions, such as in the absence of specific external agents, and by external factors such as smoking, heat, background environmental radiation, and drugs. All these internal and external conditions result in a basal level of γH2AX which must be considered for the correct assessment of the DSBs after IR exposure. In this review we analyze the most common conditions that induce H2AX phosphorylation, including specific exogenous stimuli, cellular states, basic environmental factors, and lifestyles. Moreover, we discuss the most widely used methods for γH2AX determination and describe the principal applications of γH2AX scoring, paying particular attention to clinical studies. This knowledge will help us optimize the use of available methods in order to discern the specific γH2AX following IR-induced DSBs from the basal level of γH2AX in the cells.
Collapse
|
7
|
Meng QQ, Zhang RF, Zhang ZX, Yang Y, Chai DL, Yuan YY, Ren Y, Dong JC, Dang XH. ESTABLISHMENT OF THE IN VITRO DOSE-RESPONSE CALIBRATION CURVE FOR X-RAY-INDUCED MICRONUCLEI IN HUMAN LYMPHOCYTES. RADIATION PROTECTION DOSIMETRY 2022; 198:1338-1345. [PMID: 35961020 DOI: 10.1093/rpd/ncac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The cytokinesis-block micronucleus assay has proven to be a reliable technique for biological dosimetry. This study aimed to establish the dose-response curve for X-ray-induced micronucleus. Peripheral blood samples from three healthy donors were irradiated with various doses and scoring criteria by the micronuclei (MN) in binucleated cells. The results showed that the frequency of MN increased with the elevation of radiation dose. CABAS and Dose Estimate software were used to fit the MN and dose into a linear quadratic model, and the results were compared. The linear and quadratic coefficients obtained by the two software were basically the same and were comparable with published curves of similar radiation quality and dose rates by other studies. The dose-response curve established in this study can be used as an alternative method for in vitro dose reconstruction and provides a reliable tool for biological dosimetry in accidental or occupational radiation exposures.
Collapse
Affiliation(s)
- Qian-Qian Meng
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Rui-Feng Zhang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Zhong-Xin Zhang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Yi Yang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Dong-Liang Chai
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Ya-Yi Yuan
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Yue Ren
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Juan-Cong Dong
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Xu-Hong Dang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| |
Collapse
|
8
|
Bucher M, Weiss T, Endesfelder D, Trompier F, Ristic Y, Kunert P, Schlattl H, Giussani A, Oestreicher U. Dose Variations Using an X-Ray Cabinet to Establish in vitro Dose-Response Curves for Biological Dosimetry Assays. Front Public Health 2022; 10:903509. [PMID: 35655448 PMCID: PMC9152255 DOI: 10.3389/fpubh.2022.903509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
In biological dosimetry, dose-response curves are essential for reliable retrospective dose estimation of individual exposure in case of a radiation accident. Therefore, blood samples are irradiated in vitro and evaluated based on the applied assay. Accurate physical dosimetry of the irradiation performance is a critical part of the experimental procedure and is influenced by the experimental setup, especially when X-ray cabinets are used. The aim of this study was to investigate variations and pitfalls associated with the experimental setups used to establish calibration curves in biological dosimetry with X-ray cabinets. In this study, irradiation was performed with an X-ray source (195 kV, 10 mA, 0.5 mm Cu filter, dose rate 0.52 Gy/min, 1st and 2nd half-value layer = 1.01 and 1.76 mm Cu, respectively, average energy 86.9 keV). Blood collection tubes were irradiated with a dose of 1 Gy in vertical or horizontal orientation in the center of the beam area with or without usage of an additional fan heater. To evaluate the influence of the setups, physical dose measurements using thermoluminescence dosimeters, electron paramagnetic resonance dosimetry and ionization chamber as well as biological effects, quantified by dicentric chromosomes and micronuclei, were compared. This study revealed that the orientation of the sample tubes (vertical vs. horizontal) had a significant effect on the radiation dose with a variation of -41% up to +49% and contributed to a dose gradient of up to 870 mGy inside the vertical tubes due to the size of the sample tubes and the associated differences in the distance to the focal point of the tube. The number of dicentric chromosomes and micronuclei differed by ~30% between both orientations. An additional fan heater had no consistent impact. Therefore, dosimetric monitoring of experimental irradiation setups is mandatory prior to the establishment of calibration curves in biological dosimetry. Careful consideration of the experimental setup in collaboration with physicists is required to ensure traceability and reproducibility of irradiation conditions, to correlate the radiation dose and the number of aberrations correctly and to avoid systematical bias influencing the dose estimation in the frame of biological dosimetry.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - Tina Weiss
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - David Endesfelder
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - Francois Trompier
- Department of External Dosimetry, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Yoann Ristic
- Department of External Dosimetry, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Patrizia Kunert
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - Helmut Schlattl
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - Augusto Giussani
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| | - Ursula Oestreicher
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection (BfS), Oberschleißheim, Germany
| |
Collapse
|
9
|
Kugathasan T, Mothersill C. Radiobiological and social considerations following a radiological terrorist attack; mechanisms, detection and mitigation: review of new research developments. Int J Radiat Biol 2021; 98:855-864. [PMID: 34644238 DOI: 10.1080/09553002.2021.1988180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE This review focuses on recent research in understanding the different aspects of what society should expect from a radiological attack. Although some scenarios of a radiologic event can be impossible to be prepared for, the effort put toward educating and better preparing for these types of events can help minimize some of the issues. The different areas discussed in this review include radioisotopes of concern, detection of radiation dose, biological effects of ionizing radiation exposures, low dose effects, targeted and non-targeted effects (NTE), psychological effects, mitigations, with a brief mention of other considerations such as medical preparedness, communication, policy implications and ethical issues. This review also discusses solutions to rectify the issues faced at hand that may come up in the event of a radiologic terrorist attack. CONCLUSIONS A review of recent work in the area shows that a multi-layered and interdisciplinary approach is needed to prepare for a radiological terrorist attack. As well as medical preparedness, the approach needs to include sociological and psychological planning as well as an understanding of ethical issues. Since the likely 'dirty bomb' scenarios may involve low dose exposures to high numbers of people, a much better theoretical and practical understanding of low dose radiobiology and the development of robust low dose exposure biomarkers is needed as part of an integrated plan.
Collapse
Affiliation(s)
- Tanya Kugathasan
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | | |
Collapse
|