1
|
Balasubramanian D, Agraharam G, Girigoswami A, Girigoswami K. Multiple radiations and its effect on biological system - a review on in vitro and in vivo mechanisms. Ann Med 2025; 57:2486595. [PMID: 40219761 PMCID: PMC11995768 DOI: 10.1080/07853890.2025.2486595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/07/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
PURPOSE We are exposed to different types of radiation from natural sources or for biomedical diagnostic and therapeutic purposes at different doses or times. The dose, duration, and number of exposures can cause multiple effects both in vivo and in vitro. Several researchers have explored the effects of ionizing and non-ionizing radiation in cell lines and animal models. Macromolecules, such as DNA, RNA, and proteins, are the primary targets of damage and can lead to several diseases, including cancer and even cell death. Chronic low-dose exposure of cells to radiation can cause alterations in gene expression and can be deleterious to the fate of the cells. We aim to discuss the implications of multiple radiations on different biological systems, including how nanotechnology can facilitate the effects of radiation in therapeutics. CONCLUSION In this review, we discuss the in vitro and in vivo changes that occur due to exposure to different types of radiation used in diagnosis, therapeutics, and other means, such as radiation equipment operators and patients being exposed. The effects of ionizing and non-ionizing radiation have been discussed separately. We have also mentioned in detail about the human-caused accidents of Hiroshima and Chernobyl in this article. The application of nanotechnology in facilitating the effects of radiation in the therapy and management of radioresistance of cells has also been discussed. The radio resistance and method to improve the radiosensitivity have also been mentioned. This review article can reflect the recent developments in the various uses of ionizing and non-ionizing radiation in biomedical field and will open up new avenues to utilize radiation in a more prudent way. The role of nanotechnology in reducing the harmful effects of radiation is also discussed.
Collapse
Affiliation(s)
- Deepika Balasubramanian
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| | - Gopikrishna Agraharam
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| |
Collapse
|
2
|
Fukunaga H, Hamada N. Testicular exposure to ionizing radiation and sperm epigenetic alterations as possible mechanisms of hereditary effects: perspectives from the viewpoint of radiation protection. Int J Radiat Biol 2024; 101:101-106. [PMID: 39689155 DOI: 10.1080/09553002.2024.2440860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE Since the genotoxicity of ionizing radiation was demonstrated in the 1920s, its hereditary effects have remained a serious concern for human society. The International Commission on Radiological Protection has highlighted the need for appropriate protection against hereditary effects of radiation in humans. In this paper, we review the literature on the possible multigenerational and transgenerational effects following testicular exposure to radiation, focusing on sperm epigenetic alterations as possible mechanisms. RESULTS This mini-review highlights that hereditary effects following testicular exposure occur via epigenetic changes of germ cells in animal models, providing implications on human radiation protection. CONCLUSIONS A great amount of epigenomic research data has emerged rapidly since the beginning of this century; thus, a revision of the radiological protection protocols against the hereditary effects of radiation would be no longer inevitable. The collection and analysis of evidence on these effects must be enhanced and further accelerated to formulate appropriate protection protocols in the future.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
3
|
Tanaka IB, Tanaka S, Nakahira R, Komura JI. Transgenerational Effects on Lifespan and Pathology of Paternal Pre-conceptional Exposure to Continuous Low-dose-rate Gamma Rays in C57BL/6J Mice. Radiat Res 2024; 202:870-887. [PMID: 39471831 DOI: 10.1667/rade-24-00093.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/04/2024] [Indexed: 11/01/2024]
Abstract
The present work investigates the multigenerational effects of paternal pre-conceptional exposure to continuous low-dose-rate gamma rays in C56BL/6J mice. Male C57BL/6J (F0 sires) mice were exposed to low dose rates of 20, 1, and 0.05 mGy/day for 400 days, to total accumulated doses of 8,000, 400, and 20 mGy, respectively. Upon completion of the radiation exposure, the F0 male mice were immediately bred to non-irradiated 8-week-old C57BL/6J females (F0 dams) to produce the first-generation (F1) mice. Randomly selected F1 males and females were then bred to produce the second-generation (F2) mice. All the mice, except the F0 dams, were subjected to pathological examination upon natural death. Reproductive parameters, lifespan, causes of death, neoplasm incidences and non-neoplastic disease incidences were used as parameters to evaluate the biological effects of continuous pre-conceptional exposure of the sires (F0) to continuous low-dose-rate radiation. There were no significant differences in the pregnancy and weaning rates among the parent (F0) generation. Average litter size and average number of weaned pups (F1) from dams bred to males (F0) exposed to 20 mGy/day were significantly decreased compared to the non-irradiated controls. Significant lifespan shortening in the sires (F0) was observed only in the 20 mGy/day group due to early death from malignant lymphomas. Life shortening was also observed in the F1 progeny of sires (F0) exposed to 20 and 1 mGy/day, but could not be attributed to a specific cause. No significant differences in the causes of death were found between dose groups in any generation. The number of primary tumors per mouse was significantly increased only in the F0 males exposed to 20 mGy/day. Except for the increased incidence rate for Harderian gland neoplasms in sires (F0) exposed to 20 mGy/day, there was no significant difference in neoplasm incidences and tumor spectra in all 3 generations in each sex regardless of radiation exposure. No multi- or transgenerational effects in the parameters examined were observed in the F1 and F2 progeny of sires exposed to 0.05 mGy/day for 400 days.
Collapse
Affiliation(s)
- Ignacia B Tanaka
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Rei Nakahira
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Jun-Ichiro Komura
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| |
Collapse
|
4
|
Amrenova A, Ainsbury E, Baudin C, Giussani A, Lochard J, Rühm W, Scholz-Kreisel P, Trott K, Vaillant L, Wakeford R, Zölzer F, Laurier D. Consideration of hereditary effects in the radiological protection system: evolution and current status. Int J Radiat Biol 2024; 100:1240-1252. [PMID: 38190433 DOI: 10.1080/09553002.2023.2295289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE The purpose of this paper is to provide an overview of the methodology used to estimate radiation genetic risks and quantify the risk of hereditary effects as outlined in the ICRP Publication 103. It aims to highlight the historical background and development of the doubling dose method for estimating radiation-related genetic risks and its continued use in radiological protection frameworks. RESULTS This article emphasizes the complexity associated with quantifying the risk of hereditary effects caused by radiation exposure and highlights the need for further clarification and explanation of the calculation method. As scientific knowledge in radiation sciences and human genetics continues to advance in relation to a number of factors including stability of disease frequency, selection pressures, and epigenetic changes, the characterization and quantification of genetic effects still remains a major issue for the radiological protection system of the International Commission on Radiological Protection. CONCLUSION Further research and advancements in this field are crucial for enhancing our understanding and addressing the complexities involved in assessing and managing the risks associated with hereditary effects of radiation.
Collapse
Affiliation(s)
- A Amrenova
- Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | | | - C Baudin
- Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - A Giussani
- BfS - Federal Office for Radiation Protection, Oberschleißheim, Germany
| | - J Lochard
- Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - W Rühm
- BfS - Federal Office for Radiation Protection, Oberschleißheim, Germany
| | - P Scholz-Kreisel
- BfS - Federal Office for Radiation Protection, Oberschleißheim, Germany
| | - K Trott
- Deptartment Radiation Oncology, Technical University München, Fontenay-aux-Roses, France
| | | | - R Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, UK
| | - F Zölzer
- Department of Health and Social Sciences, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - D Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| |
Collapse
|
5
|
Grison S, Braga-Tanaka II, Baatout S, Klokov D. In utero exposure to ionizing radiation and metabolic regulation: perspectives for future multi- and trans-generation effects studies. Int J Radiat Biol 2024; 100:1283-1296. [PMID: 38180060 DOI: 10.1080/09553002.2023.2295293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE The radiation protection community has been particularly attentive to the risks of delayed effects on offspring from low dose or low dose-rate exposures to ionizing radiation. Despite this, the current epidemiologic studies and scientific data are still insufficient to provide the necessary evidence for improving risk assessment guidelines. This literature review aims to inform future studies on multigenerational and transgenerational effects. It primarily focuses on animal studies involving in utero exposure and discusses crucial elements for interpreting the results. These elements include in utero exposure scenarios relative to the developmental stages of the embryo/fetus, and the primary biological mechanisms responsible for transmitting heritable or hereditary effects to future generations. The review addresses several issues within the contexts of both multigenerational and transgenerational effects, with a focus on hereditary perspectives. CONCLUSIONS Knowledge consolidation in the field of Developmental Origins of Health and Disease (DOHaD) has led us to propose a new study strategy. This strategy aims to address the transgenerational effects of in utero exposure to low dose and low dose-rate radiation. Within this concept, there is a possibility that disruption of epigenetic programming in embryonic and fetal cells may occur. This disruption could lead to metabolic dysfunction, which in turn may cause abnormal responses to future environmental challenges, consequently increasing disease risk. Lastly, we discuss methodological limitations in our studies. These limitations are related to cohort size, follow-up time, model radiosensitivity, and analytical techniques. We propose scientific and analytical strategies for future research in this field.
Collapse
Affiliation(s)
- Stéphane Grison
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Ignacia Iii Braga-Tanaka
- Department of Radiobiology, Institute for Environmental Sciences (IES), Rokkasho Kamikita, Aomori, Japan
| | - Sarah Baatout
- Belgian Nuclear Research Centre, SCK CEN, Institute of Nuclear Medical Applications, Mol, Belgium
- Department of Molecular Biotechnology (BW25) and Department of Human Structure and Repair (GE38), Ghent University, Ghent, Belgium
| | - Dmitry Klokov
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
- Department of Microbiology, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|