1
|
Groves AM, Johnston CJ, Misra RS, Williams JP, Finkelstein JN. Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int J Radiat Biol 2016; 92:754-765. [PMID: 27539247 DOI: 10.1080/09553002.2016.1222094] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Thoracic irradiation injures lung parenchyma, triggering inflammation and immune cell activation, leading to pneumonitis and fibrosis. Macrophage polarization contributes to these processes. Since IL-4 promotes pro-fibrotic macrophage activation, its role in radiation-induced lung injury was investigated. MATERIALS AND METHODS Lung macrophage subpopulations were characterized from 3-26 weeks following exposure of WT and IL-4-/- mice to 0 or 12.5 Gray single dose thoracic irradiation. RESULTS Loss of IL-4 did not prevent fibrosis, but blunted macrophage accumulation within the parenchyma. At 3 weeks following exposure, cell numbers and expression of F4/80 and CD206, an alternative activation marker, decreased in alveolar macrophages but increased in infiltrating macrophages in WT mice. Loss of IL-4 impaired recovery of these markers in alveolar macrophages and blunted expansion of these populations in infiltrating macrophages. CD206+ cells were evident in fibrotic regions of WT mice only, however Arg-1+ cells increased in fibrotic regions in IL-4-/- mice only. Radiation-induced proinflammatory Ly6C expression was more apparent in alveolar and interstitial macrophages from IL-4-/- mice. CONCLUSIONS IL-4 loss did not prevent alternative macrophage activation and fibrosis in irradiated mice. Instead, a role is indicated for IL-4 in maintenance of macrophage populations in the lung following high single dose thoracic irradiation.
Collapse
Affiliation(s)
- Angela M Groves
- a Department of Pediatrics M&D Neonatology, University of Rochester Medical Center , Rochester , NY , USA
| | - Carl J Johnston
- a Department of Pediatrics M&D Neonatology, University of Rochester Medical Center , Rochester , NY , USA.,b Department of Environmental Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Ravi S Misra
- a Department of Pediatrics M&D Neonatology, University of Rochester Medical Center , Rochester , NY , USA
| | - Jacqueline P Williams
- b Department of Environmental Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Jacob N Finkelstein
- a Department of Pediatrics M&D Neonatology, University of Rochester Medical Center , Rochester , NY , USA.,b Department of Environmental Medicine , University of Rochester Medical Center , Rochester , NY , USA
| |
Collapse
|
2
|
Down JD, Medhora M, Jackson IL, Cline JM, Vujaskovic Z. Do variations in mast cell hyperplasia account for differences in radiation-induced lung injury among different mouse strains, rats and nonhuman primates? Radiat Res 2013; 180:216-21. [PMID: 23819595 DOI: 10.1667/rr3245.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The role of mast cell infiltrates in the pathology of radiation damage to the lung has been a subject of continuing investigation over the past four decades. This has been accompanied by a number of proposals as to how mast cells and the secretory products thereof participate in the generation of acute inflammation (pneumonitis) and the chronic process of collagen deposition (fibrosis). An additional pathophysiology examines the possible connection between mast cell hyperplasia and pulmonary hypertension through the release of vasoactive mediators. The timing and magnitude of pneumonitis and fibrosis are known to vary tremendously among different genetic mouse strains and animal species. Therefore, we have systematically compared mast cell numbers in lung sections from nine mouse strains, two rat strains and nonhuman primates (NHP) after whole thorax irradiation (WTI) at doses ranging from 10-15 Gy and at the time of entering respiratory distress. Mice of the BALB/c strain had a dramatic increase in interstitial mast cell numbers, similar to WAG/Rij and August rats, while relatively low levels of mast cell infiltrate were observed in other mouse strains (CBA, C3H, B6, C57L, WHT and TO mice). Enumeration of mast cell number in five NHPs (rhesus macaque), exhibiting severe pneumonitis at 17 weeks after 10 Gy WTI, also indicated a low response shared by the majority of mouse strains. There appeared to be no relationship between the mast cell response and the strain-dependent susceptibility towards pneumonitis or fibrosis. Further investigations are required to explore the possible participation of mast cells in mediating specific vascular responses and whether a genetically diverse mast cell response occurs in humans.
Collapse
Affiliation(s)
- Julian D Down
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | |
Collapse
|
3
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 810] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
4
|
Johnston CJ, Williams JP, Elder A, Hernady E, Finkelstein JN. INFLAMMATORY CELL RECRUITMENT FOLLOWING THORACIC IRRADIATION. Exp Lung Res 2009; 30:369-82. [PMID: 15204829 DOI: 10.1080/01902140490438915] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ionizing radiation leads to a progressive injury in which a monocyte/macrophage-rich pneumonitis is followed by a chronic progressive fibrosis. In the present study, the role of macrophage/monocyte recruitment in the genesis of radiation-induced pulmonary fibrosis was examined. The objectives were threefold: (i) characterize the inflammatory cells recruited into the lung during the development of radiation-induced fibrosis; (ii) investigate changes in lung response following depletion of resident alveolar macrophages in vivo prior to radiation treatment; (iii) assess if inhalation of low levels of endotoxin would potentiate the radiation-initiated injury. One group of fibrosis-sensitive C57BL/6 mice was irradiated with a single dose of 15 Gy to the thorax. In a second group, resident inflammatory cells were depleted using clodronate, encapsulated into liposomes, 48 hours prior to irradiation with a single dose of 15 Gy to the thorax. Control animals were sham irradiated. All groups of animals then were examined 8, 16, or 24 weeks post irradiation. No difference in total cell numbers or cell differentials was observed between irradiated mice or those that were both liposome treated and irradiated at any time point. At 16 weeks, mice that received radiation showed a 5- to 6-fold increase in lymphocytes regardless of treatment as compared to control animals. At 24 weeks post irradiation, select groups were exposed to lipopolysaccharide (LPS) and examined 24 hours post inhalation. Lavageable protein was increased several fold in mice that received both radiation and LPS exposure as compared to 15 Gy or LPS exposure alone. These results demonstrate: (i) macrophages and lymphocytes are the predominately recruited cell types through 24 weeks post irradiation; (ii) recovery of inflammatory cells, regardless of prior macrophage depletion, were similar, suggesting that early responses are primarily driven by parenchymal cell injury; (iii) thoracic irradiation-induced injury can cause sensitization to a secondary stimulus that may result in injuries/responses not predicted by evaluating exposures individually.
Collapse
Affiliation(s)
- Carl J Johnston
- Department of Environmental Medicine, University of Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
5
|
Nakayama F, Müller K, Hagiwara A, Ridi R, Akashi M, Meineke V. Involvement of intracellular expression of FGF12 in radiation-induced apoptosis in mast cells. JOURNAL OF RADIATION RESEARCH 2008; 49:491-501. [PMID: 18525161 DOI: 10.1269/jrr.08021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Several fibroblast growth factors (FGFs) are able to reduce and improve radiation-induced tissue damage through the activation of surface fibroblast growth factor receptors (FGFRs). In contrast, some FGFs lack classical signal sequences, which play roles in the release of FGFs, and the intracellular function of these FGFs is not well clarified. In this study, we evaluated the transcript levels of 22 FGFs in a human mast cell line, HMC-1, using quantitative RT-PCR and found that FGF2 and FGF12 were expressed in HMC-1 cells. FGF12 not only lacks classical signal sequences but also fails to activate FGFRs. HMC-1 cells were transfected with an expression vector of FGF12 to clarify the intracellular function of FGF12 after irradiation. The overexpression of FGF12 in HMC-1 cells decreased ionizing radiation-induced apoptosis, and siRNA-mediated repression of FGF12 expression augmented apoptosis in HMC-1 cells. The overexpression of FGF12 strongly suppressed the marked augmentation of apoptosis induced by inhibition of the MEK/ERK pathway with PD98059. In contrast, the mitogen-activated protein kinase (MAPK) scaffold protein islet brain 2 (IB2), which was reported to bind to FGF12, did not interfere with the anti-apoptotic effect of FGF12. The expression of FGF12 transcripts was also detected in murine cultured mast cells derived from bone marrow or fetal skin. These findings suggest that FGF12 intracellularly suppresses radiation-induced apoptosis in mast cells independently of IB2.
Collapse
Affiliation(s)
- Fumiaki Nakayama
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Zhang R, Ghosh SN, Zhu D, North PE, Fish BL, Morrow NV, Lowry T, Nanchal R, Jacobs ER, Moulder JE, Medhora M. Structural and functional alterations in the rat lung following whole thoracic irradiation with moderate doses: injury and recovery. Int J Radiat Biol 2008; 84:487-97. [PMID: 18470747 DOI: 10.1080/09553000802078396] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To characterize structural and functional injuries following a single dose of whole-thorax irradiation that might be survivable after a nuclear attack/accident. METHODS Rats were exposed to 5 or 10 Gy of X-rays to the whole thorax with other organs shielded. Non-invasive measurements of breathing rate and arterial oxygen saturation, and invasive evaluations of bronchoalveolar lavage fluid, (for total protein, Clara cell secretory protein), vascular reactivity and histology were conducted for at least 6 time points up to 52 weeks after irradiation. RESULTS Irradiation with 10 Gy resulted in increased breathing rate, a reduction in oxygen saturation, an increase in bronchoalveolar lavage fluid protein and attenuation of vascular reactivity between 4-12 weeks after irradiation. These changes were not observed with the lower dose of 5 Gy. Histological examination revealed perivascular edema at 4-8 weeks after exposure to both doses, and mild fibrosis beyond 20 weeks after 10 Gy. CONCLUSIONS Single-dose exposure of rat thorax to 10 but not 5 Gy X-irradiation resulted in a decrease in oxygen uptake and vasoreactivity and an increase in respiratory rate, which paralleled early pulmonary vascular pathology. Vascular edema resolved and was replaced by mild fibrosis beyond 20 weeks after exposure, while lung function recovered.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chiang CS, Liu WC, Jung SM, Chen FH, Wu CR, McBride WH, Lee CC, Hong JH. Compartmental responses after thoracic irradiation of mice: Strain differences. Int J Radiat Oncol Biol Phys 2005; 62:862-71. [PMID: 15936571 DOI: 10.1016/j.ijrobp.2005.02.037] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 02/20/2005] [Accepted: 02/20/2005] [Indexed: 11/30/2022]
Abstract
PURPOSE To examine and compare the molecular and cellular processes leading to radiation fibrosis and pneumonitis in C57BL/6J and C3H/HeN mice. METHODS AND MATERIALS At indicated times after various doses of thoracic irradiation, the cell populations obtained by bronchoalveolar lavage of C57BL/6J mice were differentially analyzed by cytology and assessed by RNase protection (RPA) assay for levels of cytokines and related genes. The molecular responses in bronchial alveolar lavage (BAL) populations were compared with those in whole lung of C57BL/6J mice and with those of C3H/HeN mice. The former strain develops late radiation fibrosis, whereas the latter develop subacute radiation pneumonitis. RESULTS In C57BL/6J mice, a decrease in the total number of BAL cells was found 1 week after 6, 12, or 20 Gy thoracic irradiation with a subsequent dose-dependent increase up to 6 months. After 12 and 20 Gy, large, foamy macrophages and multinucleated cells became evident in BAL at 3 weeks, only to disappear at 4 months and reappear at 6 months. This biphasic response was mirrored by changes expression of mRNA for proinflammatory cytokines and the Mac-1 macrophage-associated antigen. As with BAL, whole lung tissue also showed biphasic cytokine and Mac-1 mRNA responses, but there were striking temporal differences between the two compartments, with changes in whole lung tissue correlating better than BAL with the onset of fibrosis in this strain. The radiation-induced proinflammatory mRNA responses had strain-dependent and strain-independent components. Thoracic irradiation of C3H/HeN induced similar increases in tumor necrosis factor (TNF)-alpha, interleukin (IL)-1alpha/beta, and interferon (IFN)-gamma mRNA expression in lung as it did in C57BL/6J mice during the "presymptom" phase at 1-2 months. However, immediately preceding and during the pneumonitic time period at 3-4 months, TNF-alpha and IL-1alpha/beta mRNAs were highly upregulated in C3H/HeN mice, which develop pneumonitis, but not in C57BL/6J mice, which do not. At the onset of radiation fibrosis in C57BL/6J mice (5-6 months), irradiated lungs had increased levels of IL-1alpha/beta and IFN-gamma mRNA expression, but the TNF-alpha response was, notably, still muted. CONCLUSIONS The major molecular and cellular events in lungs of C57BL/6J and C3H/HeN mice, which develop late fibrosis and subacute pneumonitis after thoracic irradiation respectively, take place within the interstitium and are not reflected within BAL populations. The initial proinflammatory responses are similar in the two strains, but later responses reflect the latent time to lesion development. TNF-alpha expression at 3-4 months may be important in radiation-induced pneumonitis, and its downregulation is important in avoiding this radiation-induced complication.
Collapse
Affiliation(s)
- Chi-Shiun Chiang
- Department of Atomic Science, National Tsing Hua University, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Riekki R, Harvima IT, Jukkola A, Risteli J, Oikarinen A. The production of collagen and the activity of mast-cell chymase increase in human skin after irradiation therapy. Exp Dermatol 2004; 13:364-71. [PMID: 15186323 DOI: 10.1111/j.0906-6705.2004.00164.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibrosis is a common complication of radiotherapy. The pathogenesis of radiation-induced fibrosis is not known in detail. There is increasing evidence to suggest that mast cells contribute to various fibrotic conditions. Several mast-cell mediators have been proposed to have a role in fibrogenesis. Tryptase and chymase, the predominant proteins in mast cells, have been shown to induce fibroblast proliferation and collagen synthesis in vitro. In order to explore the role of mast cells in irradiation-induced fibrosis, we analyzed skin biopsies and suction blister fluid (SBF) samples from the lesional and healthy-looking skin of 10 patients who had been treated for breast cancer with surgery and radiotherapy. The biopsies were analyzed histochemically for mast-cell tryptase, chymase, kit receptor, and tumor necrosis factor-alpha. Skin collagen synthesis was assessed by determining the levels of type I and III procollagen amino-terminal propeptides (PINP and PIIINP) in SBF and using immunohistochemical staining for PINP. Immunohistochemical stainings for prolyl-4-hydroxylase reflecting collagen synthesis and chymase immunoreactivity in irradiated and control skin were also performed. The mean level of procollagen propeptides in SBF, which reflects actual skin collagen synthesis in vivo, was markedly increased in irradiated skin compared to corresponding healthy control skin areas. The mean number of PINP-positive fibroblasts was also significantly increased in the upper dermis of radiotherapy-treated skin. The number of cells positive for tryptase, chymase and kit receptor was markedly increased in irradiated skin. In addition, using double-staining techniques, it was possible to demonstrate that in some areas of the dermis, tryptase-positive mast cells and fibroblasts are closely associated. These findings suggest a possible role of mast cells in enhanced skin collagen synthesis and fibrosis induced by radiotherapy.
Collapse
Affiliation(s)
- Riitta Riekki
- Department of Dermatology, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
9
|
Susskind H, Hymowitz MH, Lau YH, Atkins HL, Hurewitz AN, Valentine ES, Meek AG, Zucker S. Increased plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in lung and breast cancer are altered during chest radiotherapy. Int J Radiat Oncol Biol Phys 2003; 56:1161-9. [PMID: 12829155 DOI: 10.1016/s0360-3016(03)00161-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Does the release of plasma matrix metalloproteinase-9 (MMP-9) by radiation-activated airway epithelial cells and infiltrating inflammatory cells play a role in the radiation damage or repair process in the lungs? We evaluated lung damage by ionizing radiation using plasma levels of MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and MMP-3 as biologic markers of tissue damage, and also their relationship to changes in pulmonary epithelial permeability, clinical signs and symptoms, and lung structural changes. METHODS AND MATERIALS Seven serial studies were conducted in each of 8 patients undergoing chest radiotherapy (RT) for lung or breast cancer, beginning before the first treatment (baseline) and then biweekly to approximately 100 days during and after RT. Chest radiographs were monitored for each patient. Sandwich enzyme-linked immunoassays (ELISA) were used to measure plasma MMP-3, MMP-9, and TIMP-1 levels. Lung permeability was evaluated by measuring the rate of epithelial clearance of approximately 150 microCi ( approximately 5.6 MBq) inhaled (99m)Tc diethylenetriamine pentaacetate aerosol (DTPA). RESULTS Lung and breast cancer resulted in very high plasma levels of MMP-9 (126-893 ng/mL) and TIMP-1 (496-8985 ng/mL) in all subjects studied before initiation of RT. This compares with plasma MMP-9 and TIMP-1 values in healthy volunteers of 29 +/- 11 ng/mL and 436 +/- 86 ng/mL, respectively. RT was followed by a sharp decrease in plasma MMP-9 within the first 2 weeks, but without a corresponding change in TIMP-1. In contrast, plasma MMP-3 levels, which are generally increased with inflammation, were elevated in only 1 of 5 subjects. CONCLUSION Lung and breast cancer are associated with high plasma levels of MMP-9 and TIMP-1. These high baseline plasma levels of MMP-9 were reduced in the first 2 weeks of RT in 7 of 8 subjects, and TIMP-1 plasma levels remained high in all subjects. The decrease in plasma MMP-9 after initiation of chest RT appears to reflect a suppressive effect on cancer-induced cellular responses rather than a primary role for MMP-9 in radiation-induced lung damage. Likewise, the lack of a rise in plasma MMP-3 levels does not support a role for MMP-3 in tissue injury or repair in the lung. It remains to be determined whether plasma MMP-9 measurements will serve as a useful parameter in predicting cancer relapse.
Collapse
Affiliation(s)
- Herbert Susskind
- Clinical Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Büttner C, Skupin A, Reimann T, Rieber EP, Unteregger G, Geyer P, Frank KH. Local production of interleukin-4 during radiation-induced pneumonitis and pulmonary fibrosis in rats: macrophages as a prominent source of interleukin-4. Am J Respir Cell Mol Biol 1997; 17:315-25. [PMID: 9308918 DOI: 10.1165/ajrcmb.17.3.2279] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fibrosis of lung tissue is a frequent and serious consequence of radiotherapy of mammary carcinoma. The pathogenesis of radiation-induced pulmonary fibrosis remains unclear. Cytokines such as transforming growth factor beta (TGFbeta) and interleukin-4 (IL-4) have been reported to stimulate collagen synthesis in fibroblasts in vitro. The aim of this study was to document the presence of IL-4 during the development of post-irradiation lung fibrosis. Right lungs of male Fischer rats were irradiated with a single dose of 20 Gy and IL-4 expression in the irradiated lungs was monitored for a period of three months. IL-4 gene transcription as determined by ribonuclease protection assay (RPA) as well as IL-4 synthesis as shown by Western blotting increased in the irradiated lungs reaching a plateau concentration within 3 weeks after irradiation. Enhanced IL-4 production was still detected at day 84 after irradiation. The cellular origin of IL-4 was analyzed by in situ hybridization and two-color immunofluorescence on lung tissue sections and on cytospin preparations of leukocytes obtained from bronchoalveolar lavages. These experiments revealed a substantial IL-4 production by macrophages during development of post-irradiation lung fibrosis.
Collapse
Affiliation(s)
- C Büttner
- Institute of Immunology, Medical Faculty, Technical University Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Rosiello RA, Merrill WW, Rockwell S, Carter D, Cooper JA, Care S, Amento EP. Radiation pneumonitis. Bronchoalveolar lavage assessment and modulation by a recombinant cytokine. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1993; 148:1671-6. [PMID: 8256918 DOI: 10.1164/ajrccm/148.6_pt_1.1671] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A common side effect of radiotherapy is the development of fibrosis in the irradiated tissue. To study the mechanisms of this fibrogenic response, we developed a model system of whole-lung radiation in the rat and studied the evolution of injury by assessment of the cells and protein recovered by lavage. Once the pattern of injury was known, we attempted to modulate this reaction by administering the cytokine interferon-gamma (IFN-gamma). Rats received 15 Gy radiation to the whole thorax and were studied by lung lavage at intervals of 1 to 35 days after radiation. The effect of radiation was an initial (24 h) leak of protein, unaccompanied by cellular alterations, that resolved by 48 h. This was followed 2 wk later by a phase of inflammatory cell recruitment and more significant protein leak. A third phase of increase in inflammatory cells and further increase in protein flux was noted at Day 35. A significant cellular infiltrate was seen in lung sections obtained from animals treated in parallel experiments. IFN-gamma was given by osmotic pump from Day 0 to Day 35. This treatment significantly attenuated the PMN recruitment and protein leak (p < 0.002 and 0.01, respectively) at Days 25 and 35. Histologic sections demonstrated reduced alveolar cellularity and exudate at Day 25 (p < 0.05); however, significant numbers of inflammatory cells and exudate were present in irradiated and IFN-gamma-treated animals at Day 35. These data indicate that inflammatory cell recruitment may play a role in the lung injury following radiation. Furthermore, these preliminary data indicate that a cytokine blocks this reaction.
Collapse
Affiliation(s)
- R A Rosiello
- Department of Medicine, Yale University School of Medicine, West Haven, Connecticut 35215
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
We characterized in vitro the effects of gamma-radiation (12.5-100 cGy) on pulmonary microvascular endothelial cell (PMEC) morphology and F-actin organization. Cellular retraction was documented by phase-contrast microscopy and the organization of actin microfilaments was determined by immunofluorescence. Characterization included radiation dose effects, their temporal duration and reversibility of the effects. A dose-dependent relationship between the level of exposure (12.5-100 cGy) and the rate and extent of endothelial retraction was observed. Moreover, analysis of radiation-induced depolymerization of F-actin microfilament stress fibres correlated positively with the changes in PMEC morphology. The depolymerization of the stress fibre bundles was dependent on radiation dose and time. Cells recovered from exposure to reform contact inhibited monolayers > or = 24 h post-irradiation. Concomitantly, the depolymerized microfilaments reorganized to their preirradiated state as microfilament stress fibres arrayed parallel to the boundaries of adjacent contact-inhibited cells. The data presented here are representative of a series of studies designed to characterize low-dose radiation effects on pulmonary microvascular endothelium. Our data suggest that post-irradiation lung injuries (e.g. oedema) may be induced with only a single fraction of therapeutic radiation, and thus microscopic oedema may initiate prior to the lethal effects of radiation on the microvascular endothelium, and much earlier than would be suggested by the time course for clinically-detectable oedema.
Collapse
Affiliation(s)
- S S Kantak
- Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, MN
| | | | | |
Collapse
|
13
|
Hassink EA, Souren TS, Boersma LJ, Peerboom PF, Melkert R, van Zandwijk N, Lebesque JV, Bruning PF. Pulmonary morbidity 10-18 years after irradiation for Hodgkin's disease. Eur J Cancer 1993; 29A:343-7. [PMID: 8398331 DOI: 10.1016/0959-8049(93)90382-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pulmonary function tests were performed in 78 patients who had been curatively treated for Hodgkin's disease with mantle field irradiation 10-18 years ago. Mean values of the total lung capacity (95.2%), vital capacity (VC) (95.9%), forced expiratory volume in 1 s (FEV1) (90.6%), and carbon monoxide diffusing capacity per unit alveolar volume (82.7%) showed significant deviations from the predicted normal values, standardised for age, sex, race and height. In a multiple regression analysis the normalised total dose of irradiation, the field of irradiation, and the interval since irradiation had independent negative effects on the test results. Patients reported more coughing, wheezing and dyspnoea on exertion in comparison with hospital-visitors. Their smoking habits and reported pulmonary disease were not different. It is concluded that small, but significant impairment of pulmonary function exists after a follow-up of 14 (2) years [mean (S.D.)]. The clinical impact of these findings seems, however, minimal. Further avoidance of pulmonary toxicity requires a careful quantitative study of the effects of the radiation dose and irradiated volume.
Collapse
Affiliation(s)
- E A Hassink
- Department of Medical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Huis, Amsterdam
| | | | | | | | | | | | | | | |
Collapse
|