1
|
Lima BA, Pais AC, Dupont J, Dias P, Custódio N, Sousa AB, Carmo-Fonseca M, Carvalho C. Genetic modulation of RNA splicing rescues BRCA2 function in mutant cells. Life Sci Alliance 2025; 8:e202402845. [PMID: 39741007 PMCID: PMC11707380 DOI: 10.26508/lsa.202402845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
Variants in the hereditary cancer-associated BRCA1 and BRCA2 genes can alter RNA splicing, producing transcripts that encode internally truncated yet potentially functional proteins. However, few studies have quantitatively analyzed variant-specific splicing isoforms. Here, we investigated cells heterozygous and homozygous for the BRCA2:c.681+5G>C variant. Using droplet digital RT-PCR, we identified two variant-specific mRNA isoforms. The predominant transcript is out-of-frame, contains a premature termination codon, and is degraded via the nonsense-mediated mRNA decay pathway. In addition, we detected a novel minor isoform encoding an internally truncated protein lacking non-essential domains. Homozygous mutant cells expressed low levels of BRCA2 protein and were defective in DNA repair. Using CRISPR-Cas9 gene editing, we induced the production of in-frame transcripts in mutant cells, which resulted in increased protein expression, enhanced RAD51 focus formation, and reduced chromosomal breaks after exposure to genotoxic agents. Our findings highlight the therapeutic potential of splicing modulation to restore BRCA2 function in mutant cells, offering a promising strategy to prevent cancer development.
Collapse
Affiliation(s)
| | | | - Juliette Dupont
- Serviço de Genética, Unidade Local de Saúde Santa Maria, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Patrícia Dias
- Serviço de Genética, Unidade Local de Saúde Santa Maria, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Noélia Custódio
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/0346k0491 GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Ana Berta Sousa
- Serviço de Genética, Unidade Local de Saúde Santa Maria, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Maria Carmo-Fonseca
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/0346k0491 GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Célia Carvalho
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/0346k0491 GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| |
Collapse
|
2
|
Urbańska M, Sofińska K, Czaja M, Szymoński K, Skirlińska-Nosek K, Seweryn S, Lupa D, Szymoński M, Lipiec E. Molecular alterations in metaphase chromosomes induced by bleomycin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124026. [PMID: 38368817 DOI: 10.1016/j.saa.2024.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Chromosomes are intranuclear structures, their main function is to store and transmit genetic information during cell division. They are composed of tightly packed DNA in the form of chromatin, which is constantly exposed to various damaging factors. The resulting changes in DNA can have serious consequences (e.g. mutations) if they are not repaired or repaired incorrectly. In this article, we studied chromosomes isolated from human cervical cancer cells (HeLa) exposed to a genotoxic drug causing both single- and double-strand breaks. Specifically, we used bleomycin to induce DNA damage. We followed morphological and chemical changes in chromosomes upon damage induction. Atomic force microscopy was used to visualize the morphology of chromosomes, while Raman microspectroscopy enabled the detection of changes in the chemical structure of chromatin with the resolution close to the diffraction limit. Additionally, we extracted spectra corresponding to chromosome I or chromatin from hyperspectral Raman maps with convolutional neural networks (CNN), which were further analysed with the principal component analysis (PCA) algorithm to reveal molecular markers of DNA damage in chromosomes. The applied multimodal approach revealed simultaneous morphological and molecular changes, including chromosomal aberrations, alterations in DNA conformation, methylation pattern, and increased protein expression upon the bleomycin treatment at the level of the single chromosome.
Collapse
Affiliation(s)
- Marta Urbańska
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Kamila Sofińska
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Michał Czaja
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Krzysztof Szymoński
- Jagiellonian University Medical College, Department of Pathomorphology, Grzegorzecka 16, 31-531, Krakow, Poland; University Hospital, Department of Pathomorphology, Krakow, Poland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Sara Seweryn
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Dawid Lupa
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Marek Szymoński
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Ewelina Lipiec
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
| |
Collapse
|
3
|
Sitmukhambetov S, Dinh B, Lai Y, Banigan EJ, Pan Z, Jia X, Chi Y. Development and implementation of a metaphase DNA model for ionizing radiation induced DNA damage calculation. Phys Med Biol 2022; 68:10.1088/1361-6560/aca5ea. [PMID: 36533598 PMCID: PMC9969557 DOI: 10.1088/1361-6560/aca5ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
Objective. To develop a metaphase chromosome model representing the complete genome of a human lymphocyte cell to support microscopic Monte Carlo (MMC) simulation-based radiation-induced DNA damage studies.Approach. We first employed coarse-grained polymer physics simulation to obtain a rod-shaped chromatid segment of 730 nm in diameter and 460 nm in height to match Hi-C data. We then voxelized the segment with a voxel size of 11 nm per side and connected the chromatid with 30 types of pre-constructed nucleosomes and 6 types of linker DNAs in base pair (bp) resolutions. Afterward, we piled different numbers of voxelized chromatid segments to create 23 pairs of chromosomes of 1-5μm long. Finally, we arranged the chromosomes at the cell metaphase plate of 5.5μm in radius to create the complete set of metaphase chromosomes. We implemented the model in gMicroMC simulation by denoting the DNA structure in a four-level hierarchical tree: nucleotide pairs, nucleosomes and linker DNAs, chromatid segments, and chromosomes. We applied the model to compute DNA damage under different radiation conditions and compared the results to those obtained with G0/G1 model and experimental measurements. We also performed uncertainty analysis for relevant simulation parameters.Main results. The chromatid segment was successfully voxelized and connected in bps resolution, containing 26.8 mega bps (Mbps) of DNA. With 466 segments, we obtained the metaphase chromosome containing 12.5 Gbps of DNA. Applying it to compute the radiation-induced DNA damage, the obtained results were self-consistent and agreed with experimental measurements. Through the parameter uncertainty study, we found that the DNA damage ratio between metaphase and G0/G1 phase models was not sensitive to the chemical simulation time. The damage was also not sensitive to the specific parameter settings in the polymer physics simulation, as long as the produced metaphase model followed a similar contact map distribution.Significance. Experimental data reveal that ionizing radiation induced DNA damage is cell cycle dependent. Yet, DNA chromosome models, except for the G0/G1 phase, are not available in the state-of-the-art MMC simulation. For the first time, we successfully built a metaphase chromosome model and implemented it into MMC simulation for radiation-induced DNA damage computation.
Collapse
Affiliation(s)
| | - Bryan Dinh
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Youfang Lai
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Edward J. Banigan
- Institute for Medical Engineering & Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zui Pan
- Graduate Nursing, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, MD 21231, USA
| | - Yujie Chi
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
4
|
Parra-Nunez P, Cooper C, Sanchez-Moran E. The Role of DNA Topoisomerase Binding Protein 1 (TopBP1) in Genome Stability in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122568. [PMID: 34961037 PMCID: PMC8706423 DOI: 10.3390/plants10122568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 05/17/2023]
Abstract
DNA topoisomerase II (TOPII) plays a very important role in DNA topology and in different biological processes such as DNA replication, transcription, repair, and chromosome condensation in higher eukaryotes. TOPII has been found to interact directly with a protein called topoisomerase II binding protein 1 (TopBP1) which also seems to have important roles in DNA replication and repair. In this study, we conducted different experiments to assess the roles of TopBP1 in DNA repair, mitosis, and meiosis, exploring the relationship between TOPII activity and TopBP1. We found that topbp1 mutant seedlings of Arabidopsis thaliana were hypersensitive to cisplatin treatment and the inhibition of TOPII with etoposide produced similar hypersensitivity levels. Furthermore, we recognised that there were no significant differences between the WT and topbp1 seedlings treated with cisplatin and etoposide together, suggesting that the hypersensitivity to cisplatin in the topbp1 mutant could be related to the functional interaction between TOPII and TopBP1. Somatic and meiotic anaphase bridges appeared in the topbp1 mutant at similar frequencies to those when TOPII was inhibited with merbarone, etoposide, or ICFR-187. The effects on meiosis of TOPII inhibition were produced at S phase/G2 stage, suggesting that catenanes could be produced at the onset of meiosis. Thus, if the processing of the catenanes is impaired, some anaphase bridges can be formed. Also, the appearance of anaphase bridges at first and second division is discussed.
Collapse
|
5
|
Migration Groups: A Poorly Explored Point of View for Genetic Damage Assessment Using Comet Assay in Human Lymphocytes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new point of view for genetic damage assessment using the comet assay is proposed based on the number of migration groups, the number of comets in each group, and the groups with the highest number of comets. Human lymphocytes were exposed to different concentrations of Methyl Methane Sulfonate (MMS), Maleic Hydrazide (MH), 2,4-Dichlorophenoxyacetic (2,4-D), and N-nitroso diethylamine (NDEA). Using comet assay, the migration means of the comets were determined and later grouped arbitrarily in migration groups with no higher differences than 1 µc. The number of migration groups, the number of comets in each group, and the groups with the highest number of comets (modes) were determined. All four of the genotoxic agents studied showed a significant increase (p < 0.05) in the tail length and the number of migration groups compared to the negative control. The number of migration groups did not show a significant variation between the four-genotoxic agents nor within their different concentrations. However, the comparison of the modes did show differences between the genotoxic agents, but not within the concentrations of a same genotoxic agent, which indicated a determined chemical interaction on the DNA. These parameters can improve the detection of genetic damage associated with certain genotoxic agents.
Collapse
|
6
|
Regulation of ddb2 expression in blind cavefish and zebrafish reveals plasticity in the control of sunlight-induced DNA damage repair. PLoS Genet 2021; 17:e1009356. [PMID: 33544716 PMCID: PMC7891740 DOI: 10.1371/journal.pgen.1009356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/18/2021] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
We have gained considerable insight into the mechanisms which recognize and repair DNA damage, but how they adapt to extreme environmental challenges remains poorly understood. Cavefish have proven to be fascinating models for exploring the evolution of DNA repair in the complete absence of UV-induced DNA damage and light. We have previously revealed that the Somalian cavefish Phreatichthys andruzzii, lacks photoreactivation repair via the loss of light, UV and ROS-induced photolyase gene transcription mediated by D-box enhancer elements. Here, we explore whether other systems repairing UV-induced DNA damage have been similarly affected in this cavefish model. By performing a comparative study using P. andruzzii and the surface-dwelling zebrafish, we provide evidence for a conservation of sunlight-regulated Nucleotide Excision Repair (NER). Specifically, the expression of the ddb2 gene which encodes a key NER recognition factor is robustly induced following exposure to light, UV and oxidative stress in both species. As in the case of the photolyase genes, D-boxes in the ddb2 promoter are sufficient to induce transcription in zebrafish. Interestingly, despite the loss of D-box-regulated photolyase gene expression in P. andruzzii, the D-box is required for ddb2 induction by visible light and oxidative stress in cavefish. However, in the cavefish ddb2 gene this D-box-mediated induction requires cooperation with an adjacent, highly conserved E2F element. Furthermore, while in zebrafish UV-induced ddb2 expression results from transcriptional activation accompanied by stabilization of the ddb2 mRNA, in P. andruzzii UV induces ddb2 expression exclusively via an increase in mRNA stability. Thus, we reveal plasticity in the transcriptional and post transcriptional mechanisms regulating the repair of sunlight-induced DNA damage under long-term environmental challenges.
Collapse
|
7
|
Liddle P, Jara-Wilde J, Lafon-Hughes L, Castro I, Härtel S, Folle G. dSTORM microscopy evidences in HeLa cells clustered and scattered γH2AX nanofoci sensitive to ATM, DNA-PK, and ATR kinase inhibitors. Mol Cell Biochem 2020; 473:77-91. [PMID: 32638256 DOI: 10.1007/s11010-020-03809-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
In response to DNA double-strand breaks (DSB), histone H2AX is phosphorylated around the lesion by a feed forward signal amplification loop, originating γH2AX foci detectable by immunofluorescence and confocal microscopy as elliptical areas of uniform intensity. We exploited the significant increase in resolution (~ × 10) provided by single-molecule localization microscopy (SMLM) to investigate at nanometer scale the distribution of γH2AX signals either endogenous (controls) or induced by the radiomimetic bleomycin (BLEO) in HeLa cells. In both conditions, clustered substructures (nanofoci) confined to γH2AX foci and scattered nanofoci throughout the remnant nuclear area were detected. SR-Tesseler software (Voronoï tessellation-based segmentation) was combined with a custom Python script to first separate clustered nanofoci inside γH2AX foci from scattered nanofoci, and then to perform a cluster analysis upon each nanofoci type. Compared to controls, γH2AX foci in BLEO-treated nuclei presented on average larger areas (0.41 versus 0.19 µm2), more nanofoci per focus (22.7 versus 13.2) and comparable nanofoci densities (~ 60 nanofoci/µm2). Scattered γH2AX nanofoci were equally present (~ 3 nanofoci/µm2), suggesting an endogenous origin. BLEO-treated cells were challenged with specific inhibitors of canonical H2AX kinases, namely: KU-55933, VE-821 and NU-7026 for ATM, ATR and DNA-PK, respectively. Under treatment with pooled inhibitors, clustered nanofoci vanished from super-resolution images while scattered nanofoci decreased (~ 50%) in density. Residual scattered nanofoci could reflect, among other alternatives, H2AX phosphorylation mediated by VRK1, a recently described non-canonical H2AX kinase. In addition to H2AX findings, an analytical approach to quantify clusters of highly differing density from SMLM data is put forward.
Collapse
Affiliation(s)
- Pablo Liddle
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Jorge Jara-Wilde
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Departamento de Ciencias de la Computación, Universidad de Chile, Santiago, Chile
| | - Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Iván Castro
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Steffen Härtel
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gustavo Folle
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
8
|
Tay IJ, Park JJH, Price AL, Engelward BP, Floyd SR. HTS-Compatible CometChip Enables Genetic Screening for Modulators of Apoptosis and DNA Double-Strand Break Repair. SLAS DISCOVERY 2020; 25:906-922. [PMID: 32452708 DOI: 10.1177/2472555220918367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dysfunction of apoptosis and DNA damage response pathways often drive cancer, and so a better understanding of these pathways can contribute to new cancer therapeutic strategies. Diverse discovery approaches have identified many apoptosis regulators, DNA damage response, and DNA damage repair proteins; however, many of these approaches rely on indirect detection of DNA damage. Here, we describe a novel discovery platform based on the comet assay that leverages previous technical advances in assay precision by incorporating high-throughput robotics. The high-throughput screening (HTS) CometChip is the first high-throughput-compatible assay that can directly detect physical damage in DNA. We focused on DNA double-strand breaks (DSBs) and utilized our HTS CometChip technology to perform a first-of-its-kind screen using an shRNA library targeting 2564 cancer-relevant genes. Conditions of the assay enable detection of DNA fragmentation from both exogenous (ionizing radiation) and endogenous (apoptosis) sources. Using this approach, we identified LATS2 as a novel DNA repair factor as well as a modulator of apoptosis. We conclude that the HTS CometChip is an effective assay for HTS to identify modulators of physical DNA damage and repair.
Collapse
Affiliation(s)
- Ian J Tay
- Department of Biological Engineering, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Agency of Science, Technology and Research Graduate Academy, A*STAR Singapore, Singapore.,Institute of Molecular and Cellular Biology, A*STAR Singapore, Singapore
| | - James J H Park
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Anna L Price
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.,Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| |
Collapse
|
9
|
Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy - a review. EJNMMI Radiopharm Chem 2019; 4:27. [PMID: 31659527 PMCID: PMC6800417 DOI: 10.1186/s41181-019-0075-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background Auger electrons (AEs) are very low energy electrons that are emitted by radionuclides that decay by electron capture (e.g. 111In, 67Ga, 99mTc, 195mPt, 125I and 123I). This energy is deposited over nanometre-micrometre distances, resulting in high linear energy transfer (LET) that is potent for causing lethal damage in cancer cells. Thus, AE-emitting radiotherapeutic agents have great potential for treatment of cancer. In this review, we describe the radiobiological properties of AEs, their radiation dosimetry, radiolabelling methods, and preclinical and clinical studies that have been performed to investigate AEs for cancer treatment. Results AEs are most lethal to cancer cells when emitted near the cell nucleus and especially when incorporated into DNA (e.g. 125I-IUdR). AEs cause DNA damage both directly and indirectly via water radiolysis. AEs can also kill targeted cancer cells by damaging the cell membrane, and kill non-targeted cells through a cross-dose or bystander effect. The radiation dosimetry of AEs considers both organ doses and cellular doses. The Medical Internal Radiation Dose (MIRD) schema may be applied. Radiolabelling methods for complexing AE-emitters to biomolecules (antibodies and peptides) and nanoparticles include radioiodination (125I and 123I) or radiometal chelation (111In, 67Ga, 99mTc). Cancer cells exposed in vitro to AE-emitting radiotherapeutic agents exhibit decreased clonogenic survival correlated at least in part with unrepaired DNA double-strand breaks (DSBs) detected by immunofluorescence for γH2AX, and chromosomal aberrations. Preclinical studies of AE-emitting radiotherapeutic agents have shown strong tumour growth inhibition in vivo in tumour xenograft mouse models. Minimal normal tissue toxicity was found due to the restricted toxicity of AEs mostly on tumour cells targeted by the radiotherapeutic agents. Clinical studies of AEs for cancer treatment have been limited but some encouraging results were obtained in early studies using 111In-DTPA-octreotide and 125I-IUdR, in which tumour remissions were achieved in several patients at administered amounts that caused low normal tissue toxicity, as well as promising improvements in the survival of glioblastoma patients with 125I-mAb 425, with minimal normal tissue toxicity. Conclusions Proof-of-principle for AE radiotherapy of cancer has been shown preclinically, and clinically in a limited number of studies. The recent introduction of many biologically-targeted therapies for cancer creates new opportunities to design novel AE-emitting agents for cancer treatment. Pierre Auger did not conceive of the application of AEs for targeted cancer treatment, but this is a tremendously exciting future that we and many other scientists in this field envision.
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Valerie J Facca
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Joint Department of Medical Imaging and Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
10
|
Prusinski Fernung LE, Yang Q, Sakamuro D, Kumari A, Mas A, Al-Hendy A. Endocrine disruptor exposure during development increases incidence of uterine fibroids by altering DNA repair in myometrial stem cells. Biol Reprod 2019; 99:735-748. [PMID: 29688260 DOI: 10.1093/biolre/ioy097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Despite the major negative impact uterine fibroids (UFs) have on female reproductive health, little is known about early events that initiate development of these tumors. Somatic fibroid-causing mutations in mediator complex subunit 12 (MED12), the most frequent genetic alterations in UFs (up to 85% of tumors), are implicated in transforming normal myometrial stem cells (MSCs) into tumor-forming cells, though the underlying mechanism(s) leading to these mutations remains unknown. It is well accepted that defective DNA repair increases the risk of acquiring tumor-driving mutations, though defects in DNA repair have not been explored in UF tumorigenesis. In the Eker rat UF model, a germline mutation in the Tsc2 tumor suppressor gene predisposes to UFs, which arise due to "second hits" in the normal allele of this gene. Risk for developing these tumors is significantly increased by early-life exposure to endocrine-disrupting chemicals (EDCs), suggesting increased UF penetrance is modulated by early drivers for these tumors. We analyzed DNA repair capacity using analyses of related gene and protein expression and DNA repair function in MSCs from adult rats exposed during uterine development to the model EDC diethylstilbestrol. Adult MSCs isolated from developmentally exposed rats demonstrated decreased DNA end-joining ability, higher levels of DNA damage, and impaired ability to repair DNA double-strand breaks relative to MSCs from age-matched, vehicle-exposed rats. These data suggest that early-life developmental EDC exposure alters these MSCs' ability to repair and reverse DNA damage, providing a driver for acquisition of mutations that may promote the development of these tumors in adult life.
Collapse
Affiliation(s)
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daitoku Sakamuro
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, USA
| | - Alpana Kumari
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, USA
| | - Aymara Mas
- Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain.,Igenomix, Paterna, Valencia, Spain.,Department of Obstetrics and Gynecology, Valencia University and INCLIVA, Valencia, Spain
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Zhao H, Di Mauro G, Lungu-Mitea S, Negrini P, Guarino AM, Frigato E, Braunbeck T, Ma H, Lamparter T, Vallone D, Bertolucci C, Foulkes NS. Modulation of DNA Repair Systems in Blind Cavefish during Evolution in Constant Darkness. Curr Biol 2018; 28:3229-3243.e4. [PMID: 30318355 DOI: 10.1016/j.cub.2018.08.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/19/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022]
Abstract
How the environment shapes the function and evolution of DNA repair systems is poorly understood. In a comparative study using zebrafish and the Somalian blind cavefish, Phreatichthys andruzzii, we reveal that during evolution for millions of years in continuous darkness, photoreactivation DNA repair function has been lost in P. andruzzii. We demonstrate that this loss results in part from loss-of-function mutations in pivotal DNA-repair genes. Specifically, C-terminal truncations in P. andruzzii DASH and 6-4 photolyase render these proteins predominantly cytoplasmic, with consequent loss in their functionality. In addition, we reveal a general absence of light-, UV-, and ROS-induced expression of P. andruzzii DNA-repair genes. This results from a loss of function of the D-box enhancer element, which coordinates and enhances DNA repair in response to sunlight. Our results point to P. andruzzii being the only species described, apart from placental mammals, that lacks the highly evolutionary conserved photoreactivation function. We predict that in the DNA repair systems of P. andruzzii, we may be witnessing the first stages in a process that previously occurred in the ancestors of placental mammals during the Mesozoic era.
Collapse
Affiliation(s)
- Haiyu Zhao
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Giuseppe Di Mauro
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Sebastian Lungu-Mitea
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld, 69120 Heidelberg, Germany; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Pietro Negrini
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Andrea Maria Guarino
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Biology, University of Naples "Federico II," 80126 Naples, Italy
| | - Elena Frigato
- Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Hongju Ma
- Botanical Institute, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Daniela Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Nicholas S Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
12
|
Prusinski Fernung LE, Al-Hendy A, Yang Q. A Preliminary Study: Human Fibroid Stro-1 +/CD44 + Stem Cells Isolated From Uterine Fibroids Demonstrate Decreased DNA Repair and Genomic Integrity Compared to Adjacent Myometrial Stro-1 +/CD44 + Cells. Reprod Sci 2018; 26:619-638. [PMID: 29954254 DOI: 10.1177/1933719118783252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT Although uterine fibroids (UFs) continue to place a major burden on female reproductive health, the mechanisms behind their origin remain undetermined. Normal myometrial stem cells may be transformed into tumor-initiating stem cells, causing UFs, due to unknown causes of somatic mutations in MED12, found in up to 85% of sporadically formed UFs. It is well established in other tumor types that defective DNA repair increases the risk of such tumorigenic somatic mutations, mechanisms not yet studied in UFs. OBJECTIVE To examine the putative cause(s) of this stem cell transformation, we analyzed DNA repair within stem cells from human UFs compared to those from adjacent myometrium to determine whether DNA repair in fibroid stem cells is compromised. DESIGN Human fibroid (F) and adjacent myometrial (Myo) stem cells were isolated from fresh tissues, and gene expression relating to DNA repair was analyzed. Fibroid stem cells differentially expressed DNA repair genes related to DNA double- (DSBs) and single-strand breaks. DNA damage was measured using alkaline comet assay. Additionally, DNA DSBs were induced in these stem cells and DNA DSB repair evaluated (1) by determining changes in phosphorylation of DNA DSB-related proteins and (2) by determining differences in γ-H2AX foci formation and relative DNA repair protein RAD50 expression. RESULTS Overall, F stem cells demonstrated increased DNA damage and altered DNA repair gene expression and signaling, suggesting that human F stem cells demonstrate impaired DNA repair. CONCLUSIONS Compromised F stem cell DNA repair may contribute to further mutagenesis and, consequently, further growth and propagation of UF tumors.
Collapse
Affiliation(s)
- Lauren E Prusinski Fernung
- 1 Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ayman Al-Hendy
- 1 Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA.,2 Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL, USA
| | - Qiwei Yang
- 2 Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Bolzán AD, Bianchi MS. DNA and chromosome damage induced by bleomycin in mammalian cells: An update. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 775:51-62. [PMID: 29555029 DOI: 10.1016/j.mrrev.2018.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
Abstract
Bleomycin (BLM) is an antibiotic isolated from Streptomyces verticillus. It has radiomimetic actions on DNA thus it has been widely used in clinical chemotherapy for the treatment of different types of cancer, including head and neck tumors, lymphomas, squamous-cell carcinomas and germ-cell tumors. Because of this, the study of BLM genotoxicity is of practical interest. This antibiotic is an S-independent clastogen and an agent that generates free radicals and induces single- and double-strand breaks in DNA. In the present review, we will summarize our current knowledge concerning the DNA and chromosome damage induced by BLM in mammalian cells, with emphasis on new developments published since 1991.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), calle 526 y Camino General Belgrano, B1906APO La Plata, Buenos Aires, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, calle 60 y 122, La Plata, Buenos Aires, Argentina.
| | - Martha S Bianchi
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), calle 526 y Camino General Belgrano, B1906APO La Plata, Buenos Aires, Argentina
| |
Collapse
|
14
|
A novel histone deacetylase inhibitor TMU-35435 enhances etoposide cytotoxicity through the proteasomal degradation of DNA-PKcs in triple-negative breast cancer. Cancer Lett 2017; 400:79-88. [DOI: 10.1016/j.canlet.2017.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022]
|
15
|
Seifert BA, Dejosez M, Zwaka TP. Ronin influences the DNA damage response in pluripotent stem cells. Stem Cell Res 2017; 23:98-104. [PMID: 28715716 DOI: 10.1016/j.scr.2017.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022] Open
Abstract
Early mammalian embryonic cells must maintain a particularly robust DNA repair system, as mutations at this developmental point have detrimental consequences for the organism. How the repair system can be tuned to fulfill such elevated requirements is largely unknown, but it may involve transcriptional regulation. Ronin (Thap11) is a transcriptional regulator responsible for vital programs in pluripotent cells. Here, we report that this protein also modulates the DNA damage response of such cells. We show that conditional Ronin knockout sensitizes embryonic stem cells (ESCs) to UV-C-induced DNA damage in association with Atr pathway activation and G2/M arrest. Ronin binds to and regulates the genes encoding several DNA repair factors, including Gtf2h4 and Rad18, providing a potential mechanism for this phenotype. Our results suggest that the unique DNA repair requirements of the early embryo are not met by a static system, but rather via highly regulated processes.
Collapse
Affiliation(s)
- Bryce A Seifert
- Graduate Program in Molecular and Human Genetics at Baylor College of Medicine, Houston, TX 77030, USA.
| | - Marion Dejosez
- Huffington Center for Cell-Based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental & Regenerative Biology, Graduate School of Biomedical Sciences, New York, NY 10029, USA.
| | - Thomas P Zwaka
- Huffington Center for Cell-Based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental & Regenerative Biology, Graduate School of Biomedical Sciences, New York, NY 10029, USA.
| |
Collapse
|
16
|
Yu J, Wang R, Wu J, Dang Z, Zhang Q, Li B. Knockdown of minichromosome maintenance proteins inhibits foci forming of mediator of DNA-damage checkpoint 1 in response to DNA damage in human esophageal squamous cell carcinoma TE-1 cells. BIOCHEMISTRY (MOSCOW) 2016; 81:1221-1228. [DOI: 10.1134/s0006297916100205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Yan H, Tammaro M, Liao S. Collision of Trapped Topoisomerase 2 with Transcription and Replication: Generation and Repair of DNA Double-Strand Breaks with 5' Adducts. Genes (Basel) 2016; 7:genes7070032. [PMID: 27376333 PMCID: PMC4962002 DOI: 10.3390/genes7070032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/17/2016] [Accepted: 06/24/2016] [Indexed: 11/23/2022] Open
Abstract
Topoisomerase 2 (Top2) is an essential enzyme responsible for manipulating DNA topology during replication, transcription, chromosome organization and chromosome segregation. It acts by nicking both strands of DNA and then passes another DNA molecule through the break. The 5′ end of each nick is covalently linked to the tyrosine in the active center of each of the two subunits of Top2 (Top2cc). In this configuration, the two sides of the nicked DNA are held together by the strong protein-protein interactions between the two subunits of Top2, allowing the nicks to be faithfully resealed in situ. Top2ccs are normally transient, but can be trapped by cancer drugs, such as etoposide, and subsequently processed into DSBs in cells. If not properly repaired, these DSBs would lead to genome instability and cell death. Here, I review the current understanding of the mechanisms by which DSBs are induced by etoposide, the unique features of such DSBs and how they are repaired. Implications for the improvement of cancer therapy will be discussed.
Collapse
Affiliation(s)
- Hong Yan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | - Margaret Tammaro
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | - Shuren Liao
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
18
|
Reduced DNA double-strand break repair capacity and risk of squamous cell carcinoma of the head and neck--A case-control study. DNA Repair (Amst) 2016; 40:18-26. [PMID: 26963119 DOI: 10.1016/j.dnarep.2016.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/28/2015] [Indexed: 01/03/2023]
Abstract
Tobacco smoke and alcohol use play important roles in the etiology of squamous cell carcinoma of the head and neck (SCCHN). Smoking causes DNA damage, including double-strand DNA breaks (DSBs), that leads to carcinogenesis. To test the hypothesis that suboptimal DSB repair capacity is associated with risk of SCCHN, we applied a flow cytometry-based method to detect the DSB repair phenotype first in four EBV-immortalized human lymphoblastoid cell lines and then in human peripheral blood T-lymphocytes (PBTLs). With this blood-based laboratory assay, we conducted a pilot case-control study of 100 patients with newly diagnosed, previously untreated SCCHN and 124 cancer-free controls of non-Hispanic whites. We found that the mean DSB repair capacity level was significantly lower in cases (42.1%) than that in controls (54.4%) (P<0.001). When we used the median DSB repair capacity level in the controls as the cutoff value for calculating the odds ratios (ORs) with adjustment for age, sex, smoking and drinking status, the cases were more likely than the controls to have a reduced DSB repair capacity (adjusted OR=1.93; 95% confidence interval, CI=1.04-3.56, P=0.037), especially for those subjects who were ever drinkers (adjusted OR=2.73; 95% CI=1.17-6.35, P=0.020) and had oropharyngeal tumors (adjusted OR=2.17; 95% CI=1.06-4.45, P=0.035). In conclusion, these findings suggest that individuals with a reduced DSB repair capacity may be at an increased risk of developing SCCHN. Larger studies are warranted to confirm these preliminary findings.
Collapse
|
19
|
Abstract
The comet assay can be useful in monitoring DNA damage in single cells caused by exposure to genotoxic agents, such as those causing air, water, and soil pollution (e.g., pesticides, dioxins, electromagnetic fields) and chemo- and radiotherapy in cancer patients, or in the assessment of genoprotective effects of chemopreventive molecules. Therefore, it has particular importance in the fields of pharmacology and toxicology, and in both environmental and human biomonitoring. It allows the detection of single strand breaks as well as double-strand breaks and can be used in both normal and cancer cells. Here we describe the alkali method for comet assay, which allows to detect both single- and double-strand DNA breaks.
Collapse
|
20
|
González-Acevedo A, García-Salas JA, Gosálvez J, Fernández JL, Dávila- Rodríguez MI, Cerda-Flores RM, Méndez-López LF, Cortés-Gutiérrez EI. Evaluation of environmental genotoxicity by comet assay inColumba livia. Toxicol Mech Methods 2015; 26:61-6. [DOI: 10.3109/15376516.2015.1114059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Heterogeneity of Genetic Damage in Cervical Nuclei and Lymphocytes in Women with Different Levels of Dysplasia and Cancer-Associated Risk Factors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:293408. [PMID: 26339603 PMCID: PMC4538336 DOI: 10.1155/2015/293408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/12/2015] [Accepted: 03/09/2015] [Indexed: 11/25/2022]
Abstract
The comet assay can be used to assess genetic damage, but heterogeneity in the length of the tails is frequently observed. The aims of this study were to evaluate genetic damage and heterogeneity in the cervical nuclei and lymphocytes from patients with different levels of dysplasia and to determine the risk factors associated with the development of cervical cancer. The study included 97 females who presented with different levels of dysplasia. A comet assay was performed in peripheral blood lymphocytes and cervical epithelial cells. Significant genetic damage (P ≤ 0.05) was observed only in patients diagnosed with nuclei cervical from dysplasia III (NCDIII) and lymphocytes from dysplasia I (LDI). However, the standard deviations of the tail lengths in the cervical nuclei and lymphocytes from patients with dysplasia I were significantly different (P ≤ 0.0001) from the standard deviations of the tail lengths in the nuclei cervical and lymphocytes from patients with DII and DIII (NCDII, NCDIII and LDII, LDIII), indicating a high heterogeneity in tail length. Results suggest that genetic damage could be widely present but only manifested as increased tail length in certain cell populations. This heterogeneity could obscure the statistical significance of the genetic damage.
Collapse
|
22
|
LMP1-Induced Sumoylation Influences the Maintenance of Epstein-Barr Virus Latency through KAP1. J Virol 2015; 89:7465-77. [PMID: 25948750 DOI: 10.1128/jvi.00711-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED As a herpesvirus, Epstein-Barr virus (EBV) establishes a latent infection that can periodically undergo reactivation, resulting in lytic replication and the production of new infectious virus. Latent membrane protein-1 (LMP1), the principal viral oncoprotein, is a latency-associated protein implicated in regulating viral reactivation and the maintenance of latency. We recently found that LMP1 hijacks the SUMO-conjugating enzyme Ubc9 via its C-terminal activating region-3 (CTAR3) and induces the sumoylation of cellular proteins. Because protein sumoylation can promote transcriptional repression, we hypothesized that LMP1-induced protein sumoylation induces the repression of EBV lytic promoters and helps maintain the viral genome in its latent state. We now show that with inhibition of LMP1-induced protein sumoylation, the latent state becomes less stable or leakier in EBV-transformed lymphoblastoid cell lines. The cells are also more sensitive to viral reactivation induced by irradiation, which results in the increased production and release of infectious virus, as well as increased susceptibility to ganciclovir treatment. We have identified a target of LMP1-mediated sumoylation that contributes to the maintenance of latency in this context: KRAB-associated protein-1 (KAP1). LMP1 CTAR3-mediated sumoylation regulates the function of KAP1. KAP1 also binds to EBV OriLyt and immediate early promoters in a CTAR3-dependent manner, and inhibition of sumoylation processes abrogates the binding of KAP1 to these promoters. These data provide an additional line of evidence that supports our findings that CTAR3 is a distinct functioning regulatory region of LMP1 and confirm that LMP1-induced sumoylation may help stabilize the maintenance of EBV latency. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1) plays an important role in the maintenance of viral latency. Previously, we documented that LMP1 targets cellular proteins to be modified by a ubiquitin-like protein (SUMO). We have now identified a function for this LMP1-induced modification of cellular proteins in the maintenance of EBV latency. Because latently infected cells have to undergo viral reactivation in order to be vulnerable to antiviral drugs, these findings identify a new way to increase the rate of EBV reactivation, which increases cell susceptibility to antiviral therapies.
Collapse
|
23
|
Renna C, Salaroli R, Cocchi C, Cenacchi G. XAV939-mediated ARTD activity inhibition in human MB cell lines. PLoS One 2015; 10:e0124149. [PMID: 25835728 PMCID: PMC4383513 DOI: 10.1371/journal.pone.0124149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 03/12/2015] [Indexed: 01/22/2023] Open
Abstract
Diphtheria toxin-like ADP-ribosyltransferases 1 and 5 (ARTD-1, ARTD-5) are poly ADP-ribose enzymes (PARP) involved in non-homologous end-joining (NHEJ), which is the major pathway of double-strand break (DSB) repair. In addition, ARTD-5, or Tankyrase (TNKS), is a positive regulator of the WNT signaling implicated in the development and biological behavior of many neoplasms, such as Medulloblastoma (MB), in which radiotherapy is an essential part of the treatment. The use of radiosensitizing agents may improve the therapeutic index in MB patients by increasing the efficacy of radiotherapy, while reducing toxicity to the neuroaxis. ARTD-5 seems to be a good molecular target for improving the current treatment of MB. In this study, we used the small molecule XAV939, a potent ARTD-5 inhibitor with a slight affinity for ARTD-1, in different human MB cell lines. XAV939 inhibited the WNT pathway and DNA-PKcs in our MB cells, with many biological consequences. The co-administration of XAV939 and ionizing radiations (IR) inhibited MB cells proliferation and clonogenic capacity, decreased their efficacy in repairing DNA damage, and increased IR-induced cell mortality. In conclusion, our in vitro data show that XAV939 could be a very promising small molecule in MB treatment, and these results lay the basis for further in vivo studies with the aim of improving the current therapy available for MB patients.
Collapse
Affiliation(s)
- Cristiano Renna
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Roberta Salaroli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Claudia Cocchi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Álvarez-Quilón A, Serrano-Benítez A, Ariel Lieberman J, Quintero C, Sánchez-Gutiérrez D, Escudero LM, Cortés-Ledesma F. ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat Commun 2014; 5:3347. [PMID: 24572510 PMCID: PMC3948078 DOI: 10.1038/ncomms4347] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/30/2014] [Indexed: 12/23/2022] Open
Abstract
Ataxia telangiectasia is caused by mutations in ATM and represents a paradigm for cancer predisposition and neurodegenerative syndromes linked to deficiencies in the DNA-damage response. The role of ATM as a key regulator of signalling following DNA double-strand breaks (DSBs) has been dissected in extraordinary detail, but the impact of this process on DSB repair still remains controversial. Here we develop novel genetic and molecular tools to modify the structure of DSB ends and demonstrate that ATM is indeed required for efficient and accurate DSB repair, preventing cell death and genome instability, but exclusively when the ends are irreversibly blocked. We therefore identify the nature of ATM involvement in DSB repair, presenting blocked DNA ends as a possible pathogenic trigger of ataxia telangiectasia and related disorders.
Collapse
Affiliation(s)
- Alejandro Álvarez-Quilón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla (Departamento de Genética), Sevilla 41092, Spain
| | - Almudena Serrano-Benítez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla (Departamento de Genética), Sevilla 41092, Spain
| | - Jenna Ariel Lieberman
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla (Departamento de Genética), Sevilla 41092, Spain
| | - Cristina Quintero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla (Departamento de Genética), Sevilla 41092, Spain
| | - Daniel Sánchez-Gutiérrez
- Instituto Biomedicina Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla (Departamento de Biología Celular), Sevilla 41013, Spain
| | - Luis M. Escudero
- Instituto Biomedicina Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla (Departamento de Biología Celular), Sevilla 41013, Spain
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla (Departamento de Genética), Sevilla 41092, Spain
| |
Collapse
|
25
|
Tammaro M, Barr P, Ricci B, Yan H. Replication-dependent and transcription-dependent mechanisms of DNA double-strand break induction by the topoisomerase 2-targeting drug etoposide. PLoS One 2013; 8:e79202. [PMID: 24244448 PMCID: PMC3820710 DOI: 10.1371/journal.pone.0079202] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/19/2013] [Indexed: 02/03/2023] Open
Abstract
Etoposide is a DNA topoisomerase 2-targeting drug widely used for the treatment of cancer. The cytoxicity of etoposide correlates with the generation of DNA double-strand breaks (DSBs), but the mechanism of how it induces DSBs in cells is still poorly understood. Catalytically, etoposide inhibits the re-ligation reaction of Top2 after it nicks the two strands of DNA, trapping it in a cleavable complex consisting of two Top2 subunits covalently linked to the 5' ends of DNA (Top2cc). Top2cc is not directly recognized as a true DSB by cells because the two subunits interact strongly with each other to hold the two ends of DNA together. In this study we have investigated the cellular mechanisms that convert Top2ccs into true DSBs. Our data suggest that there are two mechanisms, one dependent on active replication and the other dependent on proteolysis and transcription. The relative contribution of each mechanism is affected by the concentration of etoposide. We also find that Top2α is the major isoform mediating the replication-dependent mechanism and both Top2α and Top2 mediate the transcription-dependent mechanism. These findings are potentially of great significance to the improvement of etoposide's efficacy in cancer therapy.
Collapse
Affiliation(s)
- Margaret Tammaro
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Peri Barr
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Brett Ricci
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Hong Yan
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Sakai R, Kondo C, Oka H, Miyajima H, Kubo K, Uehara T. Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology 2013; 315:8-16. [PMID: 24211769 DOI: 10.1016/j.tox.2013.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 11/15/2022]
Abstract
The in vitro mammalian cytogenetic tests monitor chromosomal aberrations in cultured mammalian cells to test the mutagenicity of compounds. Although these tests are especially useful for evaluating the potential clastogenic effects of chemicals, false positives associated with excessive toxicity occur frequently. There is a growing demand for mechanism-based assays to confirm positive results from cytogenetic tests. We hypothesized that a toxicogenomic approach that is based on gene expression profiles could be used to investigate mechanisms of genotoxicity. Human lymphoblastoid TK6 cells were treated with each of eight different genotoxins that included six DNA damaging compounds-mitomycin C, methyl methanesulfonate, ethyl methanesulfonate, cisplatin, etoposide, hydroxyurea-and two compounds that do not damage DNA-colchicine and adenine. Cells were exposed to each compound for 4h, and Affymetrix U133A microarrays were then used to comprehensively examine gene expression. A statistical analysis was used to select biomarker candidates, and 103 probes met our statistical criteria. Expression of cyclin-dependent kinase inhibitor 1A (CDKN1A)/p21 was ranked highest for discriminating DNA-damaging compounds. To further characterize the biological significance of alterations in gene expression, functional network analysis was performed with the 103 selected probes. Interestingly, a CDKN1A-centered interactome was identified as the most significant network. Together, these findings indicated that DNA-damaging compounds often induced changes in the expression of a large number of these 103 probes and that upregulation of CDKN1A was a common key feature of DNA damage stimuli. The utility of CDKN1A as a biomarker for assessing the genotoxicity of drug candidates was further evaluated; specifically, quantitative RT-PCR was used to assess the effects of 14 additional compounds-including DNA damaging genotoxins and genotoxins that do not damage DNA and five newly-synthesized drug candidates-on CDKN1A expression. In these assays, DNA damage-positive clastogens were clearly separated from DNA damage-negative compounds based on CDKN1A expression. In conclusion, CDKN1A may be a valuable biomarker for identifying DNA damage-inducing clastogens and as a follow-up assay for mammalian cytogenetic tests.
Collapse
Affiliation(s)
- Rina Sakai
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan; Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Chiaki Kondo
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hiroyuki Oka
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hirofumi Miyajima
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Kihei Kubo
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Takeki Uehara
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
27
|
Chiang EC, Bostwick DG, Waters DJ. Homeostatic housecleaning effect of selenium: evidence that noncytotoxic oxidant-induced damage sensitizes prostate cancer cells to organic selenium-triggered apoptosis. Biofactors 2013; 39:575-88. [PMID: 23625367 DOI: 10.1002/biof.1106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/28/2013] [Indexed: 01/01/2023]
Abstract
The anti-cancer activity of organic selenium has been most consistently documented at supra-nutritional levels at which selenium-dependent, antioxidant enzymes are maximized in both expression and activity. Thus, there is a strong imperative to identify mechanisms other than antioxidant protection to account for selenium's anti-cancer activity. In vivo work in dogs showed that dietary selenium supplementation decreased DNA damage but increased apoptosis in the prostate, leading to a new hypothesis: Organic selenium exerts its cancer preventive effect by selectively increasing apoptosis in DNA-damaged cells. Here, we test whether organic selenium (methylseleninic acid; MSA) triggers more apoptosis in human and canine prostate cancer cells that have more DNA damage (strand breaks) created by hydrogen-peroxide (H₂O₂) at noncytotoxic doses prior to MSA exposure. Apoptosis triggered by MSA was significantly higher in H₂O₂-damaged cells. A supra-additive effect was observed--the extent of MSA-triggered apoptosis in H₂O₂-damaged cells exceeded the sum of apoptosis induced by MSA or H₂O₂ alone. However, neither the persistence of H₂O₂-induced DNA damage, nor the activation of mitogen-activated protein kinases was required to sensitize cells to MSA-triggered apoptosis. Our results document that selenium can exert a "homeostatic housecleaning" effect--a preferential elimination of DNA-damaged cells. This work introduces a new and potentially important perspective on the anti-cancer action of selenium in the aging prostate that is independent of its role in antioxidant protection.
Collapse
Affiliation(s)
- Emily C Chiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN; Center on Aging and the Life Course, Purdue University, West Lafayette, IN; Gerald P. Murphy Cancer Foundation, West Lafayette, IN
| | | | | |
Collapse
|
28
|
Alpha-tomatine activates cell cycle checkpoints in the absence of DNA damage in human leukemic MOLT-4 cells. J Appl Biomed 2013. [DOI: 10.2478/v10136-012-0033-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Ventura L, Giovannini A, Savio M, Donà M, Macovei A, Buttafava A, Carbonera D, Balestrazzi A. Single Cell Gel Electrophoresis (Comet) assay with plants: research on DNA repair and ecogenotoxicity testing. CHEMOSPHERE 2013; 92:1-9. [PMID: 23557725 DOI: 10.1016/j.chemosphere.2013.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/19/2013] [Accepted: 03/06/2013] [Indexed: 05/24/2023]
Abstract
Single Cell Gel Electrophoresis is currently used to investigate the cell response to genotoxic agents as well as to several biotic and abiotic stresses that lead to oxidative DNA damage. Different versions of Single Cell Gel Electrophoresis have been developed in order to expand the range of DNA lesions that can be detected and guidelines for their use in genetic toxicology have been provided. Applications of Single Cell Gel Electrophoresis in plants are still limited, compared to animal systems. This technique is now emerging as a useful tool in assessing the potential of higher plants as stable sensors in ecosystems and source of information on the genotoxic impact of dangerous pollutants. Another interesting application of Single Cell Gel Electrophoresis deals with Mutation Breeding or the combined use of irradiation and in vitro culture technique to enhance genetic variability in elite plant genotypes. SCGE, in combination with in situ detection of Reactive Oxygen Species (ROS) induced by γ-rays and expression analysis of both DNA repair and antioxidant genes, can be used to gather information on the radiosensitivity level of the target plant genotypes.
Collapse
Affiliation(s)
- Lorenzo Ventura
- Dipartimento di Chimica, via Taramelli 12, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Schmid TE, Zlobinskaya O, Multhoff G. Differences in Phosphorylated Histone H2AX Foci Formation and Removal of Cells Exposed to Low and High Linear Energy Transfer Radiation. Curr Genomics 2013; 13:418-25. [PMID: 23450137 PMCID: PMC3426775 DOI: 10.2174/138920212802510501] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 10/17/2011] [Accepted: 06/12/2012] [Indexed: 01/14/2023] Open
Abstract
The use of particle ion beams in cancer radiotherapy has a long history. Today, beams of protons or heavy ions, predominantly carbon ions, can be accelerated to precisely calculated energies which can be accurately targeted to tumors. This particle therapy works by damaging the DNA of tissue cells, ultimately causing their death. Among the different types of DNA lesions, the formation of DNA double strand breaks is considered to be the most relevant of deleterious damages of ionizing radiation in cells. It is well-known that the extremely large localized energy deposition can lead to complex types of DNA double strand breaks. These effects can lead to cell death, mutations, genomic instability, or carcinogenesis. Complex double strand breaks can increase the probability of mis-rejoining by NHEJ. As a consequence differences in the repair kinetics following high and low LET irradiation qualities are attributed mainly to quantitative differences in their contributions of the fast and slow repair component. In general, there is a higher contribution of the slow component of DNA double strand repair after exposure to high LET radiation, which is thought to reflect the increased amount of complex DNA double strand breaks. These can be accurately measured by the γ-H2AX assay, because the number of phosphorylated H2AX foci correlates well with the number of double strand breaks induced by low or / and high LET radiation.
Collapse
Affiliation(s)
- Thomas Ernst Schmid
- Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, D-81675 München, Germany
| | | | | |
Collapse
|
31
|
Bułdak RJ, Bułdak Ł, Polaniak R, Kukla M, Birkner E, Kubina R, Kabała-Dzik A, Duława-Bułdak A, Żwirska-Korczala K. Visfatin affects redox adaptative responses and proliferation in Me45 human malignant melanoma cells: an in vitro study. Oncol Rep 2012; 29:771-8. [PMID: 23232726 DOI: 10.3892/or.2012.2175] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/18/2012] [Indexed: 11/06/2022] Open
Abstract
Visfatin has recently been established as a novel adipokine that is predominantly expressed in subcutaneous and visceral fat. Only few studies have investigated the effect of visfatin on prostate, breast, ovarian cancer as well as on astrocytoma cell biology. There have been no previous studies on antioxidative enzyme activities, proliferation processes or levels of DNA damage in malignant melanoma cells in response to visfatin stimulation. Here, we report that visfatin increases activity of selected antioxidative enzymes (SOD, CAT, GSH-Px) in culture supernatants of Me45 human malignant melanoma cells. Our findings suggest that visfatin triggers a redox adaptation response, leading to an upregulation of antioxidant capacity along with decreased levels of the lipid peroxidation process in Me45 melanoma cells. Moreover, visfatin led to a significantly increased proliferation rate in the study using the [(3)H]thymidine incorporation method. Unlike insulin, visfatin-induced melanoma cell proliferation is not mediated by an insulin receptor. Better understanding of the role of visfatin in melanoma redox states may provide sound insight into the association between obesity-related fat adipokines and the antioxidant defense system in vitro in melanoma progression.
Collapse
Affiliation(s)
- Rafał Jakub Bułdak
- Department of Physiology, Medical University of Silesia, Zabrze, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Evaluation of DNA single and double strand breaks in women with cervical neoplasia based on alkaline and neutral comet assay techniques. J Biomed Biotechnol 2012; 2012:385245. [PMID: 23093842 PMCID: PMC3470891 DOI: 10.1155/2012/385245] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 08/21/2012] [Indexed: 11/26/2022] Open
Abstract
A hospital-based unmatched case-control study was performed in order to determine the relation of DNA single (ssb) and double (dsb) strand breaks in women with and without cervical neoplasia. Cervical epithelial cells of 30 women: 10 with low grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 without cervical lesions were evaluated using alkaline and neutral comet assays. A significant increase in global DNA damage (ssb + dsb) and dsb was observed in patients with HG-SIL (48.90 ± 12.87 and 23.50 ± 13.91), patients with LG-SIL (33.60 ± 14.96 and 11.20 ± 5.71), and controls (21.70 ± 11.87 and 5.30 ± 5.38; resp.). Pearson correlation coefficient reveled a strong relation between the levels ssb and dsb (r2 = 0.99, P = 0.03, and r2 = 0.94, P = 0.16, resp.) and progression of neoplasia. The increase of dsb damage in patients with HG-SIL was confirmed by DNA breakage detection-FISH (DBD-FISH) on neutral comets. Our results argue in favor of a real genomic instability in women with cervical neoplasia, which was strengthened by our finding of a higher proportion of DNA dsb.
Collapse
|
33
|
Effect of cerium oxide nanoparticles to inflammation and oxidative DNA damages in H9c2 cells. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-012-0033-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Davies RC, Pettijohn K, Fike F, Wang J, Nahas SA, Tunuguntla R, Hu H, Gatti RA, McCurdy D. Defective DNA double-strand break repair in pediatric systemic lupus erythematosus. ACTA ACUST UNITED AC 2012; 64:568-78. [PMID: 21905016 DOI: 10.1002/art.33334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Previous reports of cells from patients with systemic lupus erythematosus (SLE) note that repair of single-strand breaks is delayed, and these lesions may be converted to double-strand breaks (DSBs) at DNA replication forks. We undertook this study to assess the integrity of DSB recognition, signaling, and repair mechanisms in B lymphoblastoid cell lines derived from patients with pediatric SLE. METHODS Nine assays were used to interrogate DSB repair and recognition in lymphoblastoid cell lines from patients with pediatric SLE, including the neutral comet assay (NCA), colony survival assay (CSA), irradiation-induced foci formation for γ-H2AX and 53BP1 proteins, kinetics of phosphorylation of structural maintenance of chromosomes protein 1 (SMC1), postirradiation bromodeoxyuridine incorporation to evaluate S phase checkpoint integrity, monoubiquitination of Fanconi protein D2, ATM protein expression, and non-homologous DNA end joining protein expression and function. RESULTS Three of the 9 assays revealed abnormal patterns of response to irradiation-induced DNA damage. The NCA and CSA yielded aberrant results in the majority of SLE lymphoblastoid cell lines. Abnormal prolongation of SMC1 phosphorylation was also noted in 2 of 16 SLE lymphoblastoid cell lines. CONCLUSION Our data suggest that DSB repair is defective in some lymphoblastoid cell lines from pediatric patients with SLE, especially when assessed by both NCA and CSA. Since these studies are nonspecific, further studies of DNA repair and kinetics are indicated to further delineate the underlying pathogenesis of SLE and possibly identify therapeutic targets.
Collapse
Affiliation(s)
- Robert C Davies
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kruszewski M, Iwanenko T, Machaj EK, Oldak T, Wojewodzka M, Kapka-Skrzypczak L, Pojda Z. Direct use of the comet assay to study cell cycle distribution and its application to study cell cycle-dependent DNA damage formation. Mutagenesis 2012; 27:551-8. [DOI: 10.1093/mutage/ges018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Rim KT, Kim SJ, Han JH, Kang MG, Kim JK, Yang JS. Effects of carbon black to inflammation and oxidative DNA damages in mouse macrophages. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-011-0052-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Yue J, Lu H, Liu J, Berwick M, Shen Z. Filamin-A as a marker and target for DNA damage based cancer therapy. DNA Repair (Amst) 2011; 11:192-200. [PMID: 22051193 DOI: 10.1016/j.dnarep.2011.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Filamin-A, also called actin binding protein 280 (ABP-280), cross-links the actin filaments into dynamic orthogonal network to serve as scaffolds in multiple signaling pathways. It has been reported that filamin-A interacts with DNA damage response proteins BRCA1 and BRCA2. Defects of filamin-A impair the repair of DNA double strand breaks (DSBs), resulting in sensitization of cells to ionizing radiation. In this study, we sought to test the hypothesis that filamin-A can be used as a target for cancer chemotherapy and as a biomarker to predict cancer response to therapeutic DNA damage. We found that reduction of filamin-A sensitizes cancer cells to chemotherapy reagents bleomycin and cisplatin, delays the repair of not only DSBs but also single strand breaks (SSBs) and interstrand crosslinks (ICLs), and increases chromosome breaks after the drug treatment. By treating a panel of human melanoma cell lines with variable filamin-A expression, we observed a correlation between expression level of filamin-A protein and drug IC(50). We further inhibited the expression of filamin-A in melanoma cells, and found that this confers an increased sensitivity to bleomycin and cisplatin treatment in a mouse xenograft tumor model. These results suggest that filamin-A plays a role in repair of a variety of DNA damage, that lack of filamin-A is a prognostic marker for a better outcome after DNA damage based treatment, and filamin-A can be inhibited to sensitize filamin-A positive cancer cells to therapeutic DNA damage. Thus filamin-A can be used as a biomarker and a target for DNA damage based cancer therapy.
Collapse
Affiliation(s)
- Jingyin Yue
- Department of Radiation Oncology, The Cancer Institute of New Jersey, UMDNJ-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ 08903, USA
| | | | | | | | | |
Collapse
|
38
|
Measurement of X-ray-induced DNA double-strand breaks at various stages of the cell cycle using the total fluorescence as a comet assay parameter. Radiat Phys Chem Oxf Engl 1993 2011. [DOI: 10.1016/j.radphyschem.2011.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Zhang Y, Rohde LH, Wu H. Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair. Curr Genomics 2011; 10:250-8. [PMID: 19949546 PMCID: PMC2709936 DOI: 10.2174/138920209788488544] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/28/2009] [Accepted: 03/30/2009] [Indexed: 11/25/2022] Open
Abstract
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.
Collapse
Affiliation(s)
- Ye Zhang
- NASA Johnson Space Center, Houston, Texas 77058
| | | | | |
Collapse
|
40
|
Gursoy-Yuzugullu O, Yuzugullu H, Yilmaz M, Ozturk M. Aflatoxin genotoxicity is associated with a defective DNA damage response bypassing p53 activation. Liver Int 2011; 31:561-71. [PMID: 21382167 DOI: 10.1111/j.1478-3231.2011.02474.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths. Aflatoxins, which may play a causative role in 5-28% of HCCs worldwide, are activated in liver cells and induce principally G→T mutations, including the TP53 codon 249(G→T) hotspot mutation. The DNA damage checkpoint response acts as an antitumour mechanism against genotoxic agents, but its role in aflatoxin-induced DNA damage is unknown. AIM We studied the DNA damage checkpoint response of human cells to aflatoxin B1 (AFB1). METHODS AND RESULTS The treatment of HepG2 hepatoma cells with mutation-inducing doses (3-5 μmol/l) of AFB1 induced DNA adducts, 8-hydroxyguanine lesions and DNA strand breaks that lasted several days. Persistent phospho-H2AX and 53BP1 foci were also detected, but cell growth was not affected. AFB1-exposed HepG2 cells formed phospho-H2AX and 53BP1 foci, but failed to phosphorylate both Chk1 and Chk2. Huh7 hepatoma and HCT116 colorectal cancer cell lines also exhibited a similarly incomplete checkpoint response. p53 phosphorylation also failed, and AFB1-exposed cells did not show p53-dependent G1 arrest or a sustained G2/M arrest. These observations contrasted sharply with the fully functional DNA damage response of cells to Adriamycin. Cotreatment of cells with AFB1 did not inhibit p53 and p21(Cip1) accumulation induced by Adriamycin. Thus, the deficient checkpoint response to AFB1 was not due to an inhibitory effect, but could be explained by an inefficient activation. CONCLUSION Genotoxic doses of AFB1 induce an incomplete and inefficient checkpoint response in human cells. This defective response may contribute to the mutagenic and carcinogenic potencies of aflatoxins.
Collapse
Affiliation(s)
- Ozge Gursoy-Yuzugullu
- Centre de Recherche INSERM, Institut Albert Bonniot, Université Joseph Fourier U823, Grenoble, France
| | | | | | | |
Collapse
|
41
|
Georgakilas AG, Holt SM, Hair JM, Loftin CW. Measurement of oxidatively-induced clustered DNA lesions using a novel adaptation of single cell gel electrophoresis (comet assay). ACTA ACUST UNITED AC 2011; Chapter 6:Unit 6.11.. [PMID: 21154553 DOI: 10.1002/0471143030.cb0611s49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The two basic groups of complex DNA damage are double-strand breaks (DSBs) and non-DSB oxidatively-induced clustered DNA lesions (OCDLs). The single-cell gel electrophoresis (SCGE) or comet assay has been widely used for the detection of low levels of various types of DNA lesions including single-strand breaks (SSBs), DSBs, and oxidized bases per individual cell. There are limited data on the use of the comet assay for the detection of non-DSB clustered DNA lesions using different repair enzymes as enzymatic probes. This unit discusses a novel adaptation of the comet assay used to measure these unique types of lesions. Until now OCDL yields have been measured using primarily pulsed-field agarose gel electrophoresis. The advantages offered by the current approach are: (1) measurement of OCDL levels per individual cell; (2) use of a small number of cells (∼10,000) and relatively low doses of ionizing radiation (1 to 2 Gy) or low levels of oxidative stress, which are not compatible with standard agarose gel electrophoresis; and finally, (3) the assay is fast and allows direct comparison with pulsed-field gel electrophoresis results.
Collapse
Affiliation(s)
- Alexandros G Georgakilas
- Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, North Carolina, USA
| | | | | | | |
Collapse
|
42
|
Yoshikawa Y, Mori T, Suzuki M, Imanaka T, Yoshikawa K. Comparative study of kinetics on DNA double-strand break induced by photo- and gamma-irradiation: Protective effect of water-soluble flavonoids. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Schmid TE, Dollinger G, Beisker W, Hable V, Greubel C, Auer S, Mittag A, Tarnok A, Friedl AA, Molls M, Röper B. Differences in the kinetics of gamma-H2AX fluorescence decay after exposure to low and high LET radiation. Int J Radiat Biol 2010; 86:682-91. [PMID: 20569192 DOI: 10.3109/09553001003734543] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE In order to obtain more insight into heavy ion tumour therapy, some features of the underlying molecular mechanisms controlling the cellular response to high linear energy transfer (LET) radiation are currently analysed. MATERIALS AND METHODS We analysed the decay of the integrated fluorescence intensity of gamma-H2AX (phosphorylated histone H2AX) which is thought to reflect the repair kinetics of radiation-induced DNA double-strand breaks (DSB) using Laser-Scanning-Cytometry. Asynchronous human HeLa cells were irradiated with a single dose of either 1.89 Gy of 55 MeV carbon ions or 5 Gy of 70 kV X-rays. RESULTS Measurements of the gamma-H2AX-intensities from 15-60 min resulted in a 16 % decrease for carbon ions and in a 43 % decrease for X-rays. After 21 h, the decrease was 77 % for carbon ions and 85 % for X-rays. The corresponding time-effect relationship was fitted by a bi-exponential function showing a fast and a slow component with identical half-life values for both radiation qualities being 24 +/- 4 min and 13.9 +/- 0.7 h, respectively. Apparent differences in the kinetics following high and low LET irradiation could completely be attributed to quantitative differences in their contributions, with the slow component being responsible for 47 % of the repair after exposure to X-rays as compared to 80 % after carbon ion irradiation. CONCLUSION gamma-H2AX loss kinetics follows a bi-exponential decline with two definite decay times independent of LET. The higher contribution of the slow component determined for carbon ion exposure is thought to reflect the increased amount of complex DSB induced by high LET radiation.
Collapse
Affiliation(s)
- Thomas E Schmid
- Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, München, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McArt DG, McKerr G, Saetzler K, Howard CV, Downes CS, Wasson GR. Comet sensitivity in assessing DNA damage and repair in different cell cycle stages. Mutagenesis 2010; 25:299-303. [DOI: 10.1093/mutage/geq006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
45
|
Mancinelli L, De Angelis PM, Annulli L, Padovini V, Elgjo K, Gianfranceschi GL. A class of DNA-binding peptides from wheat bud causes growth inhibition, G2 cell cycle arrest and apoptosis induction in HeLa cells. Mol Cancer 2009; 8:55. [PMID: 19646247 PMCID: PMC2726120 DOI: 10.1186/1476-4598-8-55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 07/31/2009] [Indexed: 01/19/2023] Open
Abstract
Background Deproteinized DNA from eukaryotic and prokaryotic cells still contains a low-molecular weight peptidic fraction which can be dissociated by alkalinization of the medium. This fraction inhibits RNA transcription and tumor cell growth. Removal from DNA of normal cells causes amplification of DNA template activity. This effect is lower or absent in several cancer cell lines. Likewise, the amount of active peptides in cancer cell DNA extracts is lower than in DNA preparation of the corresponding normal cells. Such evidence, and their ubiquitous presence, suggests that they are a regulatory, conserved factor involved in the control of normal cell growth and gene expression. Results We report that peptides extracted from wheat bud chromatin induce growth inhibition, G2 arrest and caspase-dependent apoptosis in HeLa cells. The growth rate is decreased in cells treated during the S phase only and it is accompanied by DNA damage and DNA synthesis inhibition. In G2 cells, this treatment induces inactivation of the CDK1-cyclin B1 complex and an increase of active chk1 kinase expression. Conclusion The data indicate that the chromatin peptidic pool inhibits HeLa cell growth by causing defective DNA replication which, in turn, arrests cell cycle progression to mitosis via G2 checkpoint pathway activation.
Collapse
Affiliation(s)
- Loretta Mancinelli
- Department of Cellular and Environmental Biology, CEMIN (Center of Excellence on Innovative Nanostructured Materials for chemical, physical and biomedical applications), University of Perugia, Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Olive PL, Banáth JP. Kinetics of H2AX phosphorylation after exposure to cisplatin. CYTOMETRY PART B-CLINICAL CYTOMETRY 2009; 76:79-90. [PMID: 18727058 DOI: 10.1002/cyto.b.20450] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cisplatin is a widely used cancer chemotherapeutic drug that causes DNA crosslinking and stimulates H2AX phosphorylation. Our goal was to assess the potential of gammaH2AX to help predict tumor response to cisplatin treatment. METHODS The kinetics of cisplatin-induced DNA interstrand crosslinks was measured using the alkaline comet assay and compared with gammaH2AX formation and clonogenic cell survival in several DNA repair proficient or deficient human and rodent cell lines. RESULTS The comet assay was effective in ranking cell lines according to their relative sensitivity to cisplatin based on reduced crosslink formation measured 6 h after drug exposure or by the failure of irs3 and UV41 cell lines to subsequently remove crosslinks. In comparison, the initial rate of phosphorylation of H2AX measured over the first 6 h after cisplatin treatment was unrelated to drug sensitivity or crosslinking proficiency. However, for proliferating cell cultures, the fraction of cells that retained gammaH2AX foci 24 h after cisplatin treatment was correlated with the fraction of cells that lost clonogenic potential (slope = 1.1, r(2) = 0.85). CONCLUSIONS H2AX phosphorylation occurs in response to replication fork damage caused by cisplatin induced DNA lesions, probably interstrand crosslinks. Although early kinetics of gammaH2AX formation was uninformative, retention of gammaH2AX foci 24 h after treatment was shown to be a useful indicator of cell response to killing by cisplatin. However, for gammaH2AX to serve as an indicator of cell viability after cisplatin treatment, cells must have the opportunity to transit S phase during the recovery period.
Collapse
Affiliation(s)
- Peggy L Olive
- Medical Biophysics Department, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | |
Collapse
|
47
|
Nakayama Y, Igarashi A, Kikuchi I, Obata Y, Fukumoto Y, Yamaguchi N. Bleomycin-induced over-replication involves sustained inhibition of mitotic entry through the ATM/ATR pathway. Exp Cell Res 2009; 315:2515-28. [PMID: 19527713 DOI: 10.1016/j.yexcr.2009.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 05/12/2009] [Accepted: 06/04/2009] [Indexed: 01/10/2023]
Abstract
Polyploid cells result in aneuploidy through aberrant chromosome segregation, possibly leading to tumorigenesis. Although polyploid cells are induced through over-replication by a variety of agents, including DNA-damaging drugs, the mechanisms that induce polyploidy have been hitherto unknown. Here, we show that treatment with bleomycin, a glycopeptide anticancer drug, induces over-replication at low cytotoxic doses. During bleomycin-induced over-replication, mitotic entry is inhibited through tyrosine phosphorylation of CDK1 along the ATM/ATR pathway in the early phase of treatment. Bleomycin-induced over-replication is inhibited by the inhibitors of the ATM/ATR pathway through abrogation of bleomycin-induced G2 arrest, and the ATM/ATR inhibitors promote cell death instead of over-replication. Following the phosphorylation of CDK1, the level of cyclin B1 is decreased in the late phase of treatment. Time-lapse imaging of clone cells that express a live cell marker of endogenous cyclin B1 revealed that cyclin B1 is degraded in G2-arrested cells upon bleomycin treatment. Our findings lead to a model of how the ATM/ATR pathway acts as a molecular switch for regulating cell fates, flipping between cell death via progress into mitosis, and over-replication via sustained G2 arrest upon DNA damage, where cyclin B1 degradation is an important factor for inducing over-replication.
Collapse
Affiliation(s)
- Yuji Nakayama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Sasaki MS. Advances in the biophysical and molecular bases of radiation cytogenetics. Int J Radiat Biol 2009; 85:26-47. [PMID: 19205983 DOI: 10.1080/09553000802641185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE For more than 70 years radiation cytogenetics has continued to be a topic of major concern in relation to the action of radiation on living cells. To date, diverse cytogenetic findings have developed into orderly, quantitative interpretations and have stimulated numerous biophysical models. However, it is generally agreed that any one of the models used alone is still unable to explain all aspects of the observed chromosomal effects. In this review, a large number of radiation-induced chromosome aberration findings from the literature are reassessed with special attention given to the reaction kinetics and the relevant molecular processes. CONCLUSION It is now clear that DNA double-strand breaks (DSB) are an integral component of radiation-induced chromosome aberration. At the nexus of the maintenance of genome integrity, cells are equipped with excellent systems to repair DSB, notably non-homologous end-joining (NHEJ) and homologous recombination repair (HRR). These repair mechanisms are strictly regulated along with the DNA turnover cycle. NHEJ functions in all phases of the cell cycle, whereas HRR has a supplementary role specifically in S/G2 phase, where homologous DNA sequences are available in close proximity. The repair pathways are further regulated by a complex nuclear dynamism, where DSB are sensed and large numbers of repair proteins are recruited and assembled to form a repair complex involving multiple DSB. Considering such DSB repair dynamism, radiation-induced chromosome aberrations could be well understood as DSB-DSB pairwise interactions associated with the NHEJ pathway in all phases of the cell cycle and misrepair of a single DSB associated with the complementary HRR pathway in late S/G2 phase.
Collapse
Affiliation(s)
- M S Sasaki
- Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
49
|
Kozak J, West CE, White C, da Costa-Nunes JA, Angelis KJ. Rapid repair of DNA double strand breaks in Arabidopsis thaliana is dependent on proteins involved in chromosome structure maintenance. DNA Repair (Amst) 2008; 8:413-9. [PMID: 19070688 DOI: 10.1016/j.dnarep.2008.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/05/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
Abstract
DNA double strand breaks (DSBs) are one of the most cytotoxic forms of DNA damage and must be repaired by recombination, predominantly via non-homologous joining of DNA ends (NHEJ) in higher eukaryotes. However, analysis of DSB repair kinetics of plant NHEJ mutants atlig4-4 and atku80 with the neutral comet assay shows that alternative DSB repair pathways are active. Surprisingly, these kinetic measurements show that DSB repair was faster in the NHEJ mutant lines than in wild-type Arabidopsis. Here we provide the first characterization of this KU-independent, rapid DSB repair pathway operating in Arabidopsis. The alternate pathway that rapidly removes the majority of DSBs present in nuclear DNA depends upon structural maintenance of chromosomes (SMC) complex proteins, namely MIM/AtRAD18 and AtRAD21.1. An absolute requirement for SMC proteins and kleisin for rapid repair of DSBs in Arabidopsis opens new insight into the mechanism of DSB removal in plants.
Collapse
Affiliation(s)
- Jaroslav Kozak
- Institute of Experimental Botany AS CR, Praha 6, Czech Republic
| | | | | | | | | |
Collapse
|
50
|
Smart DJ, Halicka HD, Schmuck G, Traganos F, Darzynkiewicz Z, Williams GM. Assessment of DNA double-strand breaks and gammaH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone. Mutat Res 2008; 641:43-7. [PMID: 18423498 PMCID: PMC2581813 DOI: 10.1016/j.mrfmmm.2008.03.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/13/2008] [Accepted: 03/15/2008] [Indexed: 05/03/2023]
Abstract
Double-strand breaks (DSBs) are highly deleterious DNA lesions as they lead to chromosome aberrations and/or apoptosis. The formation of nuclear DSBs triggers phosphorylation of histone H2AX on Ser-139 (defined as gammaH2AX), which participates in the repair of such DNA damage. Our aim was to compare the induction of gammaH2AX in relation to DSBs induced by topoisomerase II (TOPO II) poisons, etoposide (ETOP) and mitoxantrone (MXT), in V79 cells. DSBs were measured by the neutral comet assay, while gammaH2AX was quantified using immunocytochemistry and flow cytometry. Stabilized cleavage complexes (SCCs), lesions thought to be responsible for TOPO II poison-induced genotoxicity, were measured using a complex of enzyme-DNA assay. In the case of ETOP, a no observed adverse effect level (NOAEL) and lowest observed effect level (LOEL) for genotoxicity was determined; gammaH2AX levels paralleled DSBs at all concentrations but significant DNA damage was not detected below 0.5 microg/ml. Furthermore, DNA damage was dependent on the formation of SCCs. In contrast, at low MXT concentrations (0.0001-0.001 microg/ml), induction of gammaH2AX was not accompanied by increases in DSBs. Rather, DSBs were only significantly increased when SCCs were detected. These findings suggest MXT-induced genotoxicity occurred via at least two mechanisms, possibly related to DNA intercalation and/or redox cycling as well as TOPO II inhibition. Our findings also indicate that gammaH2AX can be induced by DNA lesions other than DSBs. In conclusion, gammaH2AX, when measured using immunocytochemical and flow cytometric methods, is a sensitive indicator of DNA damage and may be a useful tool in genetic toxicology screens. ETOP data are consistent with the threshold concept for TOPO II poison-induced genotoxicity and this should be considered in the safety assessment of chemicals displaying an affinity for TOPO II and genotoxic/clastogenic effects.
Collapse
Affiliation(s)
- Daniel J Smart
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|