1
|
Benković V, Milić M, Oršolić N, Horvat Knežević A, Brozović G, Borojević N. Brain DNA damaging effects of volatile anesthetics and 1 and 2 Gy gamma irradiation in vivo: Preliminary results. Toxicol Ind Health 2023; 39:67-80. [PMID: 36602468 DOI: 10.1177/07482337221145599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although both can cause DNA damage, the combined impact of volatile anesthetics halothane/sevoflurane/isoflurane and radiotherapeutic exposure on sensitive brain cells in vivo has not been previously analyzed. Healthy Swiss albino male mice (240 in total, 48 groups) were exposed to either halothane/sevoflurane/isoflurane therapeutic doses alone (2 h); 1 or 2 gray of gamma radiation alone; or combined exposure. Frontal lobe brain samples from five animals were taken immediately and 2, 6, and 24 h after exposure. DNA damage and cellular repair index were analyzed using the alkaline comet assay and the tail intensity parameter. Elevated tail intensity levels for sevoflurane/halothane were the highest at 6 h and returned to baseline within 24 h for sevoflurane, but not for halothane, while isoflurane treatment caused lower tail intensity than control values. Combined exposure demonstrated a slightly halothane/sevoflurane protective and isoflurane protective effect, which was stronger for 2 than for 1 gray. Cellular repair indices and tail intensity histograms indicated different modes of action in DNA damage creation. Isoflurane/sevoflurane/halothane preconditioning demonstrated protective effects in sensitive brain cells in vivo. Owing to the constant increases in the combined use of radiotherapy and volatile anesthetics, further studies should explore the mechanisms behind these effects, including longer and multiple exposure treatments and in vivo brain tumor models.
Collapse
Affiliation(s)
- Vesna Benković
- Faculty of Science, 117036University of Zagreb, Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, 118938Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nada Oršolić
- Faculty of Science, 117036University of Zagreb, Zagreb, Croatia
| | | | - Gordana Brozović
- Department of Anesthesiology, Reanimatology and ICU, University Hospital for Tumors, 499232Sestre Milosrdnice University Hospital Centre, Zagreb, Croatia.,Faculty of Dental Medicine and Health, 84992University of Osijek, Osijek, Croatia
| | - Nikola Borojević
- 8256Warrington and Halton Teaching Hospitals NHS Foundation Trust, Warrington, UK
| |
Collapse
|
2
|
Cabo Verde S, Silva T, Matos P. Effects of gamma radiation on wastewater microbiota. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:125-131. [PMID: 26370692 DOI: 10.1007/s00411-015-0617-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
Wastewater treatment by gamma radiation is a promising technology, with the capacity to reduce the impact of chemical and biological pollution of effluents in the environment. The aim of this study was to find out the effect of gamma radiation on the inactivation response of wastewater microorganisms. Wastewater samples were irradiated at a Co-60 facility, at different dose rates and at sublethal doses. The D10-values of total coliforms and mesophilic microbiota were determined for each sample and dose rate. Radio-resistant microorganisms in wastewater samples were isolated and their growth and inactivation kinetics in different composition substrates were determined, to find out the capacity of these bacteria to biodegrade the organic content of the wastewater. The results obtained suggest that irradiation substrate and dose rate influence the response of microorganisms to gamma radiation and could be also important factors for bioremediation.
Collapse
Affiliation(s)
- Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139, 7, 2695-066, Bobadela LRS, Portugal.
| | - Telma Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139, 7, 2695-066, Bobadela LRS, Portugal
| | - Paula Matos
- Laboratório de Aceleradores e Tecnologias de Radiação, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional 10 km 139, 7, 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
3
|
Lipopolysaccharide (LPS) of helicobacter modulates cellular DNA repair systems in intestinal cells. Clin Exp Med 2010; 11:171-9. [PMID: 21069418 DOI: 10.1007/s10238-010-0118-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/18/2010] [Indexed: 01/10/2023]
Abstract
The epithelium of the intestinal tract is exposed to a variety of genotoxic agents, both exogenous and endogenous, that can injure nuclear and mitochondrial DNA. DNA damage can be repaired by a series of DNA repair enzymes, while defects in this system will make these cells once more susceptible to malignant transformation or cell death. Recent studies suggest that intestinal bacteria may contribute to induce inflammation in individuals afflicted by inflammatory bowel disease (IBD), increasing the risk of developing colon cancer. Accumulating evidence suggests that Helicobacter organisms are linked to IBD as well as to gastric and colon cancer. Therefore, the focus of this study was to evaluate the effect of lipopolysaccharide (LPS) isolated from Helicobacter on modulating the DNA repair system. We used an in vitro model represented by two colon carcinoma cell lines, the DNA repair-proficient SW480 and the DNA repair-deficient LoVo, and transfected with a UVC-irradiated psV-beta-galactosidase plasmid. We observed that LPS, by upregulating the expression of inducible nitric oxide (NO), leads to an increased NO release, demonstrating that LPS is able to interfere with the DNA repair machinery of intestinal cells, thus increasing the risk of permanent genotoxic effects.
Collapse
|
4
|
Radak Z, Boldogh I. 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med 2010; 49:587-96. [PMID: 20483371 PMCID: PMC2943936 DOI: 10.1016/j.freeradbiomed.2010.05.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 02/07/2023]
Abstract
The one-electron oxidation product of guanine, 8-oxo-7,8-dihydroguanine (8-oxoG), is an abundant lesion in genomic, mitochondrial, and telomeric DNA and RNA. It is considered to be a marker of oxidative stress that preferentially accumulates at the 5' end of guanine strings in the DNA helix, in guanine quadruplexes, and in RNA molecules. 8-OxoG has a lower oxidation potential compared to guanine; thus it is susceptible to oxidation/reduction and, along with its redox products, is traditionally considered to be a major mutagenic DNA base lesion. It does not change the architecture of the DNA double helix and it is specifically recognized and excised by 8-oxoguanine DNA glycosylase (OGG1) during the DNA base excision repair pathway. OGG1 null animals accumulate excess levels of 8-oxoG in their genome, yet they do not have shorter life span nor do they exhibit severe pathological symptoms including tumor formation. In fact they are increasingly resistant to inflammation. Here we address the rarely considered significance of 8-oxoG, such as its optimal levels in DNA and RNA under a given condition, essentiality for normal cellular physiology, evolutionary role, and ability to soften the effects of oxidative stress in DNA, and the harmful consequences of its repair, as well as its importance in transcriptional initiation and chromatin relaxation.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
5
|
Manda K, Ueno M, Anzai K. Cranial irradiation-induced inhibition of neurogenesis in hippocampal dentate gyrus of adult mice: attenuation by melatonin pretreatment. J Pineal Res 2009; 46:71-8. [PMID: 18798786 DOI: 10.1111/j.1600-079x.2008.00632.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Radiation is an important therapeutic tool in the treatment of cancer. The tremendous development in radiotherapeutic techniques and dosimetry has made it possible to augment the patient survival. Therefore, attention has focused on long-range treatment side effects especially in relation to the neurocognitive changes. As cognitive health of an organism is considered to be maintained by the capacity of hippocampal neurogenesis, this study designed to evaluate the delayed effect of cranial irradiation on hippocampal neurogenesis, possible implication of oxidative stress and prophylactic action of melatonin in mice. One month after cranial irradiation (6 Gy, X-ray), changes in the population of immature and proliferating neurons in dentate gyrus were localized through the expression of the microtubule binding protein doublecortin (Dcx) and proliferation marker Ki-67. We found a substantial reduction in the Dcx and Ki-67 positive cells after irradiation. Melatonin pretreatment significantly ameliorated the radiation-induced decline in the Dcx and Ki-67 positive cells. In addition, profound increase in the 4-hydroxynonenal (4-HNE) and 8-hydroxy-2'-deoxyguanosine positive cells were reported in subventricular zone, granular cell layer and hilus after day 30 postirradiation. Immunoreactivity of these oxidative stress markers were significantly inhibited by melatonin pretreatment. To confirm the magnitude of free-radical scavenging potential of melatonin, we measured the in-vitro OH radical scavenging power of melatonin by electron spin resonance. Interestingly, the melatonin was capable of scavenging the OH radicals at very low concentration (IC(50) = 214.46 nm). The findings indicate the possible benefit of melatonin treatment to combat the delayed side effects of cranial radiotherapy.
Collapse
Affiliation(s)
- Kailash Manda
- National Institute of Radiological Science, Chiba, Japan.
| | | | | |
Collapse
|
6
|
Staluszka J, Steblecka M, Szajdzinska-Pietek E, Kohl I, Salzmann CG, Hallbrucker A, Mayer E. Radicals produced by gamma-irradiation of hyperquenched glassy water containing 2'-deoxyguanosine-5'-monophosphate. J Phys Chem A 2008; 112:8678-85. [PMID: 18729346 DOI: 10.1021/jp8037544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperquenched glassy water (HGW) has been suggested as the best model for liquid water, to be used in low-temperature studies of indirect radiation effects on dissolved biomolecules (Bednarek et al. J. Am. Chem. Soc. 1996, 118, 9387). In the present work, these effects are examined by X-band electron spin resonance spectroscopy (ESR) in gamma-irradiated HGW matrix containing 2'-deoxyguanosine-5'-monophosphate. Analysis of the complex ESR spectra indicates that, in addition to OH(*) and HO2(*) radicals generated by water radiolysis, three species are trapped at 77 K:(i) G(C8)H(*) radical, the H-adduct to the double bond at C8; (ii) G(- *) radical anion, the product of electron scavenging by the aromatic ring of the base; and (iii) dR(-H)(*) radicals formed by H abstraction from the sugar moiety, predominantly at the C'5 position. We discuss the yields of the radicals, their thermal stability and transformations, as well as the effect of photobleaching. This study confirms our earlier suggestion that in HGW the H atom addition/abstraction products are created at 77 K in competition with HO2(*) radicals, in a concerted process following ionization of water molecule at L-type defect sites of the H-bonded matrix. The lack of OH(*) reactivity toward the solute suggests that the H-bonded structure in HGW is much more effective in recombining OH(*) radicals than that of aqueous glasses obtained from highly concentrated electrolyte solutions. Furthermore, complementary experiments for the neat matrix have provided evidence that HO2(*) radicals are not the product of H atom reaction with molecular oxygen, possibly generated by ultrasounds used in the process of sample preparation.
Collapse
Affiliation(s)
- Justyna Staluszka
- Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
7
|
Manda K, Ueno M, Anzai K. AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J Pineal Res 2007; 42:386-93. [PMID: 17439555 DOI: 10.1111/j.1600-079x.2007.00432.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antioxidant function of melatonin is well established. However, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), a melatonin metabolite is a sparingly investigated biogenic amine, especially in relation to its in vivo antioxidant function. We have evaluated the oxidative damage to biomolecules (DNA, protein and lipid) induced by X-irradiation in C57BL mice and the prophylactic action of AFMK. The extent of DNA damage was analyzed by single-cell gel electrophoresis in cerebral cortex and serum 8-hydroxydeoxyguanosine (8-OHdG) levels by enzyme-linked immunosorbent assay. Oxidative modification of protein and lipid was measured in the terms of carbonyl content and 4-HAE + MDA (4-hydroxyalkenal + malondialdehyde) status of brain cortex. Radiation exposure dramatically augmented the level of 8-OHdG in serum as well as DNA migration in the comet tail. AFMK pretreatment significantly inhibited DNA damage. In addition, radiation-induced augmentation of protein carbonyl content and HAE + MDA was ameliorated by AFMK pretreatment. Whole-body exposure of mice to X-irradiation also reduced the level of brain sulfhydryl contents (protein-bound sulfhydryl, total sulfhydryl, and nonprotein sulfhydryl) which were significantly protected by AFMK. Radiation-induced decline in the total antioxidant capacity of plasma was significantly reversed in AFMK pretreated mice. Moreover, AFMK showed a very high level of in vitro hydroxyl radical scavenging potential which was measured by an electron spin resonance (ESR) study of the 2-hydroxy-5,5-dimethyl-1-pyrrolineN-oxide (DMPO-OH) adduct. IC(50) values resulting from ESR analysis was 338.08 nm. The present study indicate that AFMK is a potent antioxidant in both in vivo and in vitro systems.
Collapse
Affiliation(s)
- Kailash Manda
- National Institute of Radiological Science, Chiba, Japan
| | | | | |
Collapse
|
8
|
Alavanja MCR. Biologic damage resulting from exposure to tobacco smoke and from radon: implication for preventive interventions. Oncogene 2002; 21:7365-75. [PMID: 12379879 DOI: 10.1038/sj.onc.1205798] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cigarette smoking and residential radon are, respectively, the first and second leading cause of lung cancer in the United States today. Of the approximately 157 000 lung deaths occurring in 2000, approximately 90% can be attributed to cigarette smoking and 30% of the lung cancer deaths among non-smokers can be attributed to residential radon exposure. Although dwarfed by cigarette related lung cancer, lung cancer among lifetime non-smokers is a leading cause of death in the United States, and many other countries, accounting for approximately 16 000 deaths per year in the US. Laboratory studies and epidemiological investigations, particularly those conducted in the past decade, are yielding evidence that tobacco smoke and radon may share important elements of lung cancer's pathologic mechanism(s). Lung cancer prevention among smokers, ex-smokers and lifetime nonsmokers can be enhanced as we learn more about the etiologic mechanism(s) of lung cancer resulting from these and other exposures including diet, non-malignant respiratory diseases, occupational exposures, and susceptibility-gene. In this article we review both laboratory and epidemiologic data that gives insight into the biologic damage done to the lung from these exposures.
Collapse
Affiliation(s)
- Michael C R Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd., Room 8000, Rockville, Maryland, MD 20892, USA.
| |
Collapse
|
9
|
Szajdzinska-Pietek E, Bednarek J, Plonka A, Hallbrucker A, Mayer E. Radiation cryochemistry of frozen dilute aqueous solutions: influence of the extent of solute segregation on the radiolysis pathway. RESEARCH ON CHEMICAL INTERMEDIATES 2001. [DOI: 10.1163/156856701753536679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Rosiak J, Ulański P. Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat Phys Chem Oxf Engl 1993 1999. [DOI: 10.1016/s0969-806x(98)00319-3] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Jiang Y, Lin WZ, Yao SD, Lin NY, Zhu DY. Fast repair of oxidizing OH adducts of DNA by hydroxycinnamic acid derivatives. A pulse radiolytic study. Radiat Phys Chem Oxf Engl 1993 1999. [DOI: 10.1016/s0969-806x(98)00221-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
|
13
|
Tamba M, Torreggiani A, Tubertini O. Thiyl- and thiyl-peroxyl radicals produced from the irradiation of antioxidant thiol compounds. Radiat Phys Chem Oxf Engl 1993 1995. [DOI: 10.1016/0969-806x(95)00220-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Von Sonntag C, Bothe E, Ulanski P, Deeble D. Pulse radiolysis in model studies toward radiation processing. Radiat Phys Chem Oxf Engl 1993 1995. [DOI: 10.1016/0969-806x(95)00209-g] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|