1
|
Liu L, Huang B, Lu Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience 2024; 27:109201. [PMID: 38433903 PMCID: PMC10906530 DOI: 10.1016/j.isci.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.
Collapse
Affiliation(s)
- Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China
| | - Yingxian Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
2
|
Sarimov RM, Serov DA, Gudkov SV. Biological Effects of Magnetic Storms and ELF Magnetic Fields. BIOLOGY 2023; 12:1506. [PMID: 38132332 PMCID: PMC10740910 DOI: 10.3390/biology12121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Magnetic fields are a constant and essential part of our environment. The main components of ambient magnetic fields are the constant part of the geomagnetic field, its fluctuations caused by magnetic storms, and man-made magnetic fields. These fields refer to extremely-low-frequency (<1 kHz) magnetic fields (ELF-MFs). Since the 1980s, a huge amount of data has been accumulated on the biological effects of magnetic fields, in particular ELF-MFs. However, a unified picture of the patterns of action of magnetic fields has not been formed. Even though a unified mechanism has not yet been generally accepted, several theories have been proposed. In this review, we attempted to take a new approach to analyzing the quantitative data on the effects of ELF-MFs to identify new potential areas for research. This review provides general descriptions of the main effects of magnetic storms and anthropogenic fields on living organisms (molecular-cellular level and whole organism) and a brief description of the main mechanisms of magnetic field effects on living organisms. This review may be of interest to specialists in the fields of biology, physics, medicine, and other interdisciplinary areas.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
3
|
Gurhan H, Barnes F. Impact of weak radiofrequency and static magnetic fields on key signaling molecules, intracellular pH, membrane potential, and cell growth in HT-1080 fibrosarcoma cells. Sci Rep 2023; 13:14223. [PMID: 37648766 PMCID: PMC10469173 DOI: 10.1038/s41598-023-41167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
There are substantial concerns that extended exposures to weak radiofrequency (RF) fields can lead to adverse health effects. In this study, HT-1080 fibrosarcoma cells were simultaneously exposed to a static magnetic flux density between 10 [Formula: see text] and 300 [Formula: see text] and RF magnetic fields with amplitudes ranging from 1 nT to 1.5 μT in the frequency range from 1.8 to 7.2 MHz for four days. Cell growth rates, intracellular pH, hydrogen peroxide, peroxynitrite, membrane potential and mitochondrial calcium were measured. Results were dependent on carrier frequency and the magnitude of the RF magnetic field, modulation frequencies and the background static magnetic field (SMF). Iron sulphur (Fe-S) clusters are essential for the generation of reactive oxygen species and reactive nitrogen species (ROS and RNS). We believe the observed changes are associated with hyperfine couplings between the chemically active electrons and nuclear spins. Controlling external magnetic fields may have important clinical implications on aging, cancer, arthritis, and Alzheimer's.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer and Energy Engineering, University of Colorado at Boulder, 425 UCB #1B55, Boulder, CO, 80309, USA.
| | - Frank Barnes
- Department of Electrical, Computer and Energy Engineering, University of Colorado at Boulder, 425 UCB #1B55, Boulder, CO, 80309, USA
| |
Collapse
|
4
|
Gurhan H, Bajtoš M, Barnes F. Weak Radiofrequency Field Effects on Chemical Parameters That Characterize Oxidative Stress in Human Fibrosarcoma and Fibroblast Cells. Biomolecules 2023; 13:1112. [PMID: 37509147 PMCID: PMC10377549 DOI: 10.3390/biom13071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In the last few decades, evidence has surfaced that weak radiofrequency (RF) fields can influence biological systems. This work aims to improve our understanding of how externally applied weak RF fields alter concentrations of chemical parameters that characterize oxidative stress. We conducted a series of experiments to investigate the effects of applying weak RF magnetic fields within the 3-5 MHz region on mitochondrial respiration in both human fibrosarcoma and fibroblast cells over a period of four days. Our experimental data show that RF fields between 3 and 5 MHz were able to change the modulation of mitochondrial signaling by changing the cell growth, mitochondrial mass, and oxidative stress. Exposure to RF fields at 4.2 MHz significantly increased the mitochondrial mass and oxidative stress in fibrosarcoma cells. There are substantial concerns that extended exposure to weak RF fields can lead to health effects. The ability to control these parameters by external magnetic fields may have important clinical implications.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| | - Marek Bajtoš
- Department of Electromagnetic and Biomedical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
| | - Frank Barnes
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| |
Collapse
|
5
|
Luo J. On the anisotropic weak magnetic field effect in radical-pair reactions. J Chem Phys 2023; 158:234302. [PMID: 37318169 DOI: 10.1063/5.0149644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
For more than 60 years, scientists have been fascinated by the fact that magnetic fields even weaker than internal hyperfine fields can markedly affect spin-selective radical-pair reactions. This weak magnetic field effect has been found to arise from the removal of degeneracies in the zero-field spin Hamiltonian. Here, I investigated the anisotropic effect of a weak magnetic field on a model radical pair with an axially symmetric hyperfine interaction. I found that S-T± and T0-T± interconversions driven by the smaller x and y-components of the hyperfine interaction can be hindered or enhanced by a weak external magnetic field, depending on its direction. Additional isotropically hyperfine-coupled nuclear spins preserve this conclusion, although the S → T± and T0 → T± transitions become asymmetric. These results are supported by simulating reaction yields of a more biologically plausible, flavin-based radical pair.
Collapse
Affiliation(s)
- Jiate Luo
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
6
|
Tait CE, Krzyaniak MD, Stoll S. Computational tools for the simulation and analysis of spin-polarized EPR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107410. [PMID: 36870248 DOI: 10.1016/j.jmr.2023.107410] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The EPR spectra of paramagnetic species induced by photoexcitation typically exhibit enhanced absorptive and emissive features resulting from sublevel populations that differ from thermal equilibrium. The populations and the resulting spin polarization of the spectra are dictated by the selectivity of the photophysical process generating the observed state. Simulation of the spin-polarized EPR spectra is crucial in the characterization of both the dynamics of formation of the photoexcited state as well as its electronic and structural properties. EasySpin, the simulation toolbox for EPR spectroscopy, now includes extended support for the simulation of the EPR spectra of spin-polarized states of arbitrary spin multiplicity and formed by a variety of different mechanisms, including photoexcited triplet states populated by intersystem crossing, charge recombination or spin polarization transfer, spin-correlated radical pairs created by photoinduced electron transfer, triplet pairs formed by singlet fission and multiplet states arising from photoexcitation in systems containing chromophores and stable radicals. In this paper, we highlight EasySpin's capabilities for the simulation of spin-polarized EPR spectra on the basis of illustrative examples from the literature in a variety of fields ranging across chemistry, biology, material science and quantum information science.
Collapse
Affiliation(s)
- Claudia E Tait
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom.
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston 60208, IL, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, 98195, WA, United States
| |
Collapse
|
7
|
Hypomagnetic Fields and Their Multilevel Effects on Living Organisms. Processes (Basel) 2023. [DOI: 10.3390/pr11010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Earth’s magnetic field is one of the basic abiotic factors in all environments, and organisms had to adapt to it during evolution. On some occasions, organisms can be confronted with a significant reduction in a magnetic field, termed a “hypomagnetic field—HMF”, for example, in buildings with steel reinforcement or during interplanetary flight. However, the effects of HMFs on living organisms are still largely unclear. Experimental studies have mostly focused on the human and rodent models. Due to the small number of publications, the effects of HMFs are mostly random, although we detected some similarities. Likely, HMFs can modify cell signalling by affecting the contents of ions (e.g., calcium) or the ROS level, which participate in cell signal transduction. Additionally, HMFs have different effects on the growth or functions of organ systems in different organisms, but negative effects on embryonal development have been shown. Embryonal development is strictly regulated to avoid developmental abnormalities, which have often been observed when exposed to a HMF. Only a few studies have addressed the effects of HMFs on the survival of microorganisms. Studying the magnetoreception of microorganisms could be useful to understand the physical aspects of the magnetoreception of the HMF.
Collapse
|
8
|
Barnes F, Freeman JER. Some thoughts on the possible health effects of electric and magnetic fields and exposure guidelines. Front Public Health 2022; 10:994758. [PMID: 36187692 PMCID: PMC9521330 DOI: 10.3389/fpubh.2022.994758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023] Open
Abstract
Concerns about the possible health effects from exposure to weak electric and magnetic (EM) fields have been debated since the early 1960s. It is now well established that biological systems respond to exposure to weak EM fields at energy levels well below the current safety guidelines which result in modification of their functionality without significant changes in temperature. These observations are adding to the debate over what should be done to protect the users of cellular telecommunications systems. Experimental results showing both increases and decreases in cancer cell growth rates and concentration of reactive oxygen species for exposure to nano-Tesla magnetic fields at both radio frequencies (RF) and extra low frequencies (ELF) are cited in this paper. Some theoretical models on how variations in EM exposure can lead to different biological outcomes and how feedback and repair processes often mitigate potential health effects due to long-term exposure to low-level EM energy sources are presented. Of particular interest are the application of the radical pair mechanisms that affect polarization of electrons, and nuclear spins and the importance of time-delayed feedback loops and the timing of perturbations to oscillations in biological systems. These models help account for some of the apparently conflicting experimental results reported and suggest further investigation. These observations are discussed with particular emphasis on setting future safety guidelines for exposure to electromagnetic fields in cellular telecommunications systems. The papers cited are a very small fraction of those in the literature showing both biological effects and no effects from weak electric and magnetic fields.
Collapse
|
9
|
Exposure to static magnetic field facilitates selective attention and neuroplasticity in rats. Brain Res Bull 2022; 189:111-120. [PMID: 35987295 DOI: 10.1016/j.brainresbull.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022]
Abstract
Static magnetic fields (SMF) have neuroprotective and behavioral effects in rats, however, little is known about the effects of SMF on cognition, motor function and the underlying neurochemical mechanisms. In this study, we focused on the effects of short-term (5~10d) and long-term (13~38d) SMF exposure on selective attention and motor coordination of rats, as well as associated alterations in expression level of neuroplasticity-related structural proteins and cryptochrome (CRY1) protein in the cortex, striatum and ventral midbrain. The results showed that 6 d SMF exposure significantly enhanced selective attention without affecting locomotor activity in open field. All SMF exposures non-significantly enhanced motor coordination (Rotarod test). Neurochemical analysis demonstrated that 5d SMF exposure increased the expression of cortical and striatal CRY1 and synapsin-1 (SYN1), striatal total synapsins (SYN), and synaptophysin (SYP), growth associated protein-43 (GAP43) and post-synaptic density protein-95 (PSD95) in the ventral midbrain. Exposure to SMF for 14d increased PSD95 level in the ventral midbrain while longer SMF exposure elevated the levels of PSD95 in the cortex, SYN and SYN1 in all the examined brain areas. The increased expression of cortical and striatal CRY1and SYN1 correlated with the short-lasting effect of SMF on improving selective attention. Collectively, SMF's effect on selective attention attenuated following longer exposure to SMF whereas its effects on neuroplasticity-related structural biomarkers were time- and brain area-dependent, with some protein levels increasing with longer time exposure. These findings suggest a potential use of SMF for treatment of neurological diseases in which selective attention or neuroplasticity is impaired.
Collapse
|
10
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
11
|
Jakubowska-Lehrmann M, Białowąs M, Otremba Z, Hallmann A, Śliwińska-Wilczewska S, Urban-Malinga B. Do magnetic fields related to submarine power cables affect the functioning of a common bivalve? MARINE ENVIRONMENTAL RESEARCH 2022; 179:105700. [PMID: 35841831 DOI: 10.1016/j.marenvres.2022.105700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The aim of the study was to determine the effect of static magnetic field (SMF) and electromagnetic field (EMF), of values usually recorded near submarine cables, on the bioenergetics, oxidative stress, and neurotoxicity in the cockle Cerastoderma glaucum. Bivalves maintained a positive energy balance, but the filtration rate and energy available for individual production were significantly lower in SMF-exposed animals compared to the control treatment. No changes in the respiration were noted but ammonia excretion rate was significantly lower after exposure to EMF. Changes in the activities of antioxidant enzymes and the lipid peroxidation were not observed however, exposure to both fields resulted in increased protein carbonylation. After exposure to EMF a significant inhibition of acetylcholinesterase activity was observed. As the present study for the first time revealed the oxidative damage and neurotoxicity in marine invertebrate after exposure to artificial magnetic fields, the need for further research is highlighted.
Collapse
Affiliation(s)
| | - Marcin Białowąs
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | - Zbigniew Otremba
- Department of Physics, Gdynia Maritime University, Morska 81-87, 81-225, Gdynia, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Piłsudskiego 46, 81-378, Gdynia, Poland; Mount Allison University, 62 York St, Sackville, NB, E4L 1E2, Canada
| | | |
Collapse
|
12
|
Panagopoulos DJ, Karabarbounis A, Yakymenko I, Chrousos GP. Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). Int J Oncol 2021; 59:92. [PMID: 34617575 PMCID: PMC8562392 DOI: 10.3892/ijo.2021.5272] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure of animals/biological samples to human‑made electromagnetic fields (EMFs), especially in the extremely low frequency (ELF) band, and the microwave/radio frequency (RF) band which is always combined with ELF, may lead to DNA damage. DNA damage is connected with cell death, infertility and other pathologies, including cancer. ELF exposure from high‑voltage power lines and complex RF exposure from wireless communication antennas/devices are linked to increased cancer risk. Almost all human‑made RF EMFs include ELF components in the form of modulation, pulsing and random variability. Thus, in addition to polarization and coherence, the existence of ELFs is a common feature of almost all human‑made EMFs. The present study reviews the DNA damage and related effects induced by human‑made EMFs. The ion forced‑oscillation mechanism for irregular gating of voltage‑gated ion channels on cell membranes by polarized/coherent EMFs is extensively described. Dysfunction of ion channels disrupts intracellular ionic concentrations, which determine the cell's electrochemical balance and homeostasis. The present study shows how this can result in DNA damage through reactive oxygen species/free radical overproduction. Thus, a complete picture is provided of how human‑made EMF exposure may indeed lead to DNA damage and related pathologies, including cancer. Moreover, it is suggested that the non‑thermal biological effects attributed to RF EMFs are actually due to their ELF components.
Collapse
Affiliation(s)
- Dimitris J. Panagopoulos
- Laboratory of Health Physics, Radiobiology and Cytogenetics, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research 'Demokritos', 15310 Athens, Greece
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Electromagnetic Field-Biophysics Research Laboratory, 10681 Athens, Greece
| | - Andreas Karabarbounis
- Department of Physics, Section of Nuclear and Particle Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Igor Yakymenko
- Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Science of Ukraine, 03022 Kyiv, Ukraine
- Department of Public Health, Kyiv Medical University, 02000 Kyiv, Ukraine
| | - George P. Chrousos
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
13
|
An Open Question: Is Non-Ionizing Radiation a Tool for Controlling Apoptosis-Induced Proliferation? Int J Mol Sci 2021; 22:ijms222011159. [PMID: 34681819 PMCID: PMC8537877 DOI: 10.3390/ijms222011159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Non-ionizing radiation is commonly used in the clinical setting, despite its known ability to trigger oxidative stress and apoptosis, which can lead to damage and cell death. Although induction of cell death is typically considered harmful, apoptosis can also be beneficial in the right context. For example, cell death can serve as the signal for new tissue growth, such as in apoptosis-induced proliferation. Recent data has shown that exposure to non-ionizing radiation (such as weak static magnetic fields, weak radiofrequency magnetic fields, and weak electromagnetic fields) is able to modulate proliferation, both in cell culture and in living organisms (for example during tissue regeneration). This occurs via in vivo changes in the levels of reactive oxygen species (ROS), which are canonical activators of apoptosis. This review will describe the literature that highlights the tantalizing possibility that non-ionizing radiation could be used to manipulate apoptosis-induced proliferation to either promote growth (for regenerative medicine) or inhibit it (for cancer therapies). However, as uncontrolled growth can lead to tumorigenesis, much more research into this exciting and developing area is needed in order to realize its promise.
Collapse
|
14
|
Piszczek P, Wójcik-Piotrowicz K, Gil K, Kaszuba-Zwoińska J. Immunity and electromagnetic fields. ENVIRONMENTAL RESEARCH 2021; 200:111505. [PMID: 34126050 DOI: 10.1016/j.envres.2021.111505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Despite many studies, the question about the positive or negative influence of electromagnetic fields (EMF) on living organisms still remains an unresolved issue. To date, the results are inconsistent and hardly comparable between different laboratories. The observed bio-effects are dependent not only on the applied EMF itself, but on many other factors such as the model system tested or environmental ones. In an organism, the role of the defense system against external stressors is played by the immune system consisting of various cell types. The immune cells are engaged in many physiological processes and responsible for the proper functioning of the whole organism. Any factor with an ability to cause immunomodulatory effects may weaken or enhance the response of the immune system. This review is focused on a wide range electromagnetic fields as a possible external factor which may modulate the innate and/or adaptive immunity. Considering the existing databases, we have compiled the bio-effects evoked by EMF in particular immune cell types involved in different types of immune response with the common mechanistic models and mostly activated intracellular signaling cascade pathways.
Collapse
Affiliation(s)
- Piotr Piszczek
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121, Krakow, Czysta street 18, Poland.
| | - Karolina Wójcik-Piotrowicz
- Department of Biophysics, Jagiellonian University Medical College, Łazarza street 16, 31-530, Cracow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121, Krakow, Czysta street 18, Poland
| | - Jolanta Kaszuba-Zwoińska
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121, Krakow, Czysta street 18, Poland
| |
Collapse
|
15
|
Golovin YI, Golovin DY, Vlasova KY, Veselov MM, Usvaliev AD, Kabanov AV, Klyachko NL. Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2255. [PMID: 34578570 PMCID: PMC8470408 DOI: 10.3390/nano11092255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The review discusses the theoretical, experimental and toxicological aspects of the prospective biomedical application of functionalized magnetic nanoparticles (MNPs) activated by a low frequency non-heating alternating magnetic field (AMF). In this approach, known as nano-magnetomechanical activation (NMMA), the MNPs are used as mediators that localize and apply force to such target biomolecular structures as enzyme molecules, transport vesicles, cell organelles, etc., without significant heating. It is shown that NMMA can become a biophysical platform for a family of therapy methods including the addressed delivery and controlled release of therapeutic agents from transport nanomodules, as well as selective molecular nanoscale localized drugless nanomechanical impacts. It is characterized by low system biochemical and electromagnetic toxicity. A technique of 3D scanning of the NMMA region with the size of several mm to several cm over object internals has been described.
Collapse
Affiliation(s)
- Yuri I. Golovin
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Dmitry Yu. Golovin
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
| | - Ksenia Yu. Vlasova
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Maxim M. Veselov
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Azizbek D. Usvaliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Alexander V. Kabanov
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalia L. Klyachko
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Absalan Y, Gholizadeh M, Choi HJ. Magnetized solvents: Characteristics and various applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Manjua AC, Cabral JMS, Portugal CAM, Ferreira FC. Magnetic stimulation of the angiogenic potential of mesenchymal stromal cells in vascular tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:461-480. [PMID: 34248420 PMCID: PMC8245073 DOI: 10.1080/14686996.2021.1927834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
The growing prevalence of vascular diseases worldwide has emphasized the need for novel tissue-engineered options concerning the development of vascularized 3D constructs. This study reports, for the first time, the use of external magnetic fields to stimulate mesenchymal stromal cells (MSCs) to increase the production of vascular endothelial growth factor-A (VEGF-A). Polyvinylalcohol and gelatin-based scaffolds, containing iron oxide nanoparticles, were designed for optimal cell magnetic stimulation. While the application of static magnetic fields over 24 h did not impact on MSCs proliferation, viability and phenotypic identity, it significantly increased the production of VEGF-A and guided MSCs morphology and alignment. The ability to enhance MSCs angiogenic potential was demonstrated by the increase in the number of new vessels formed in the presence of MSCs conditioned media through in vitro and in vivo models. Ultimately, this study uncovers the potential to manipulate cellular processes through short-term magnetic stimulation.
Collapse
Affiliation(s)
- Ana C. Manjua
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carla A. M. Portugal
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
Wang Y, Gu X, Quan J, Xing G, Yang L, Zhao C, Wu P, Zhao F, Hu B, Hu Y. Application of magnetic fields to wastewater treatment and its mechanisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145476. [PMID: 33588219 DOI: 10.1016/j.scitotenv.2021.145476] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Magnetic field (MF) has been applied widely and successfully as an efficient, low-cost and easy-to-use technique to enhance wastewater treatment (WWT) performance. Although the effects of MF on WWT were revealed and summarized by some works, they are still mysterious and complex. This review summarizes the application of MF in magnetic adsorption-separation of heavy metals and dyes, treatment of domestic wastewater and photo-magnetic coupling technology. Furthermore, the mechanisms of MF-enhanced WWT are critically elaborated from the perspective of magnetic physicochemical and biological effects, such as magnetoresistance, Lorentz force, and intracellular radical pair mechanism. At last, the challenges and opportunities for MF application in WWT are discussed. For overcoming the limitations and taking advantages of MFs in WWT, fundamental research of the mechanisms of the application of MFs should be carried out in the future.
Collapse
Affiliation(s)
- Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Jianing Quan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Guohua Xing
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Liwei Yang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Chuanliang Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Fan Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China.
| | - Yuansheng Hu
- School of Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| |
Collapse
|
19
|
Low magnetic field effects on a photoinduced electron transfer reaction in an ionic liquid. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Amplification of weak magnetic field effects on oscillating reactions. Sci Rep 2021; 11:9615. [PMID: 33953230 PMCID: PMC8100163 DOI: 10.1038/s41598-021-88871-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
We explore the possibility that chemical feedback and autocatalysis in oscillating chemical reactions could amplify weak magnetic field effects on the rate constant of one of the constituent reactions, assumed to proceed via a radical pair mechanism. Using the Brusselator model oscillator, we find that the amplitude of limit cycle oscillations in the concentrations of reaction intermediates can be extraordinarily sensitive to minute changes in the rate constant of the initiation step. The relevance of such amplification to biological effects of 50/60 Hz electromagnetic fields is discussed.
Collapse
|
21
|
Tasić T, Lozić M, Glumac S, Stanković M, Milovanovich I, Djordjevich DM, Trbovich AM, Japundžić-Žigon N, De Luka SR. Static magnetic field on behavior, hematological parameters and organ damage in spontaneously hypertensive rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111085. [PMID: 32898814 DOI: 10.1016/j.ecoenv.2020.111085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Previous studies showed contradictory results of static magnetic field (SMF) influence on behavior, hematological parameters and organ damage. The aim of this study was to investigate influence of subchronic continuous exposure to upward and downward oriented SMF of moderate intensity on behavior, hematological characteristics, heart and kidney tissue of spontaneously hypertensive rats. SH rats exposed to downward oriented SMF demonstrated lack of anxious-like behavior. SMF of either orientation caused decrease in the number of platelets in peripheral blood, granulocytes in the spleen and bone marrow and increase in the number of erythrocytes in the spleen, in both exposed groups. We also demonstrated that spontaneously hypertensive rats exposed to upward oriented SMF exhibited decreased lymphocytes count in blood, decreased bone marrow erythrocytes count and rats exposed to downward oriented SMF had increased lymphocytes count in bone marrow. The results showed adverse effect of differently oriented SMF on hematological parameters of spontaneously hypertensive rats. Also, exposure to different oriented SMF didn't affect their heart and kidney morphological characteristics.
Collapse
Affiliation(s)
- Tatjana Tasić
- Faculty of Dental Medicine, University of Belgrade, Serbia
| | - Maja Lozić
- Faculty of Medicine, University of Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang B, Tian L. Reactive Oxygen Species: Potential Regulatory Molecules in Response to Hypomagnetic Field Exposure. Bioelectromagnetics 2020; 41:573-580. [PMID: 32997824 DOI: 10.1002/bem.22299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023]
Abstract
Organisms, including humans, could be exposed to hypomagnetic fields (HMFs, intensity <5 μT), e.g. in some artificially shielded magnetic environments and during deep-space flights. Previous studies have demonstrated that HMF exposure could have negative effects on the central nervous system and embryonic development in many animals. However, the underlying mechanisms remain unknown. Studies have revealed that HMFs affect cellular reactive oxygen species (ROS) levels and thereby alter physiological and biological processes in organisms. ROS, the major component of highly active free radicals, which are ubiquitous in biological systems, were hypothesized to be the candidate signaling molecules that regulate diverse physiological processes in response to changes in magnetic fields. Here, we summarize the recent advances in the study of HMF-induced negative effects on the central nervous system and early embryonic development in animals, focusing on cellular ROS and their role in response to HMFs. Furthermore, we discuss the potential mechanism through which HMFs regulate ROS levels in cells. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Bingfang Zhang
- Biogeomagnetism Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lanxiang Tian
- Biogeomagnetism Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Yago T. Low magnetic field effects on triplet pair annihilations at canonical orientations. J Chem Phys 2019; 151:214501. [PMID: 31822079 DOI: 10.1063/1.5127904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Using the density operator formalism, a simple analytical model is developed to study low magnetic field effects on triplet pair annihilations in organic solids. Analysis is restricted to canonical orientations where two identical triplet molecules have the same orientation and the direction of the external magnetic field is parallel to one of the principle axes of the dipolar coupling tensor for a triplet. The analytical solution reveals that the low magnetic field effect in the triplet pair arises from the anisotropic dipole-dipole coupling in a triplet. In the presence of the dipole-dipole coupling, the spin quantization axis for each triplet gradually changes with the increase of the external magnetic field from zero field to high field. The low magnetic field effect reaches a maximum when the Zeeman splitting between the spin states matches a dipole-dipole coupling component orthogonal to the external magnetic field direction. The result is also discussed with the low magnetic field effect in the radical pair with one isotropic hyperfine coupling.
Collapse
Affiliation(s)
- T Yago
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
24
|
Binhi VN. Nonspecific magnetic biological effects: A model assuming the spin-orbit coupling. J Chem Phys 2019; 151:204101. [DOI: 10.1063/1.5127972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- V. N. Binhi
- Prokhorov General Physics Institute, Moscow 119991, Russian Federation
| |
Collapse
|
25
|
Kerpal C, Richert S, Storey JG, Pillai S, Liddell PA, Gust D, Mackenzie SR, Hore PJ, Timmel CR. Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception. Nat Commun 2019; 10:3707. [PMID: 31420558 PMCID: PMC6697675 DOI: 10.1038/s41467-019-11655-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/15/2019] [Indexed: 12/02/2022] Open
Abstract
The fact that many animals, including migratory birds, use the Earth's magnetic field for orientation and compass-navigation is fascinating and puzzling in equal measure. The physical origin of these phenomena has not yet been fully understood, but arguably the most likely hypothesis is based on the radical pair mechanism (RPM). Whilst the theoretical framework of the RPM is well-established, most experimental investigations have been conducted at fields several orders of magnitude stronger than the Earth's. Here we use transient absorption spectroscopy to demonstrate a pronounced orientation-dependence of the magnetic field response of a molecular triad system in the field region relevant to avian magnetoreception. The chemical compass response exhibits the properties of an inclination compass as found in migratory birds. The results underline the feasibility of a radical pair based avian compass and also provide further guidelines for the design and operation of exploitable chemical compass systems.
Collapse
Affiliation(s)
- Christian Kerpal
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jonathan G Storey
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Smitha Pillai
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Paul A Liddell
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Devens Gust
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Stuart R Mackenzie
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - P J Hore
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
26
|
Marynchenko L, Nizhelska A, Shirinyan A, Makara V. Prospects of Using Biological Test-Systems for Evaluation of Effects of Electromagnetic Fields. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2019. [DOI: 10.20535/ibb.2019.3.2.169259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
27
|
Juutilainen J, Herrala M, Luukkonen J, Naarala J, Hore PJ. Magnetocarcinogenesis: is there a mechanism for carcinogenic effects of weak magnetic fields? Proc Biol Sci 2019; 285:rspb.2018.0590. [PMID: 29794049 DOI: 10.1098/rspb.2018.0590] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Extremely low-frequency (ELF) magnetic fields have been classified as possibly carcinogenic, mainly based on rather consistent epidemiological findings suggesting a link between childhood leukaemia and 50-60 Hz magnetic fields from power lines. However, causality is not the only possible explanation for the epidemiological associations, as animal and in vitro experiments have provided only limited support for carcinogenic effects of ELF magnetic fields. Importantly, there is no generally accepted biophysical mechanism that could explain such effects. In this review, we discuss the possibility that carcinogenic effects are based on the radical pair mechanism (RPM), which seems to be involved in magnetoreception in birds and certain other animals, allowing navigation in the geomagnetic field. We review the current understanding of the RPM in magnetoreception, and discuss cryptochromes as the putative magnetosensitive molecules and their possible links to cancer-relevant biological processes. We then propose a hypothesis for explaining the link between ELF fields and childhood leukaemia, discuss the strengths and weaknesses of the current evidence, and make proposals for further research.
Collapse
Affiliation(s)
- Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Herrala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Weng Z, Gillin WP, Kreouzis T. Modelling and fitting the Polaron Pair Magnetoconductance model to obtain a realistic local hyperfine field in Tris-(8-hydroxyquinoline)aluminium based diodes. Sci Rep 2019; 9:3439. [PMID: 30837571 PMCID: PMC6401170 DOI: 10.1038/s41598-019-40132-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 11/21/2022] Open
Abstract
The Polaron Pair (PP) model has been successfully applied to magnetoconductance (MC) in organic semiconductor devices under ultra-small magnetic fields (USMFE). We report µT resolution MC measurements carried out with high sensitivity (better than 10-6) on the common organic semiconductor tris-(8-hydroxyquinoline)aluminium in the range ±500 µT displaying clear minima at ~±240 µT. Unlike traditional approaches, where device MC is simply evaluated using the PP model using nominal parameters for microscopic quantities such as the local hyperfine magnetic field, we have carried out actual fitting of the PP MC model to the experimentally obtained data. The fitting procedure yields physically realistic values for the polaron pair decay rate, local hyperfine magnetic field and triplet contribution to dissociation namely: [Formula: see text] = 28.6 ± 9.7 MHz, [Formula: see text] = 0.34 ± 0.04 mT and [Formula: see text] = 0.99 ± 0.01 respectively. The local hyperfine field obtained by fitting is in excellent agreement with independently calculated values for this system and is reproducible across different devices and independent of drive conditions. This demonstrates the applicability of the fitting approach to any organic USMFE MC data for obtaining microscopic parameter values.
Collapse
Affiliation(s)
- Zhichao Weng
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS, London, United Kingdom
| | - William P Gillin
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS, London, United Kingdom
| | - Theo Kreouzis
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS, London, United Kingdom.
| |
Collapse
|
29
|
Abstract
Radical pairs (RPs) are important reaction intermediates generated whenever two radicals encounter one another, a bond is cleaved homolytically or electron transfer between non-radical species takes place. The concept of a radical pair as a reaction intermediate is introduced and developed through simple pictorial analogies, indicating how RP behaviour is governed by interplay of spin and spatial motion. Such analogies are then extended to describe the experimental consequences of RPs in magnetic resonance and magnetochemistry experiments, including reference to the relevance of RPs in biological systems. Finally experimental techniques by which RPs can be observed directly are introduced and described in the context of the developed models.
Collapse
Affiliation(s)
- J. R. Woodward
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
30
|
Hore PJ. Upper bound on the biological effects of 50/60 Hz magnetic fields mediated by radical pairs. eLife 2019; 8:44179. [PMID: 30801245 PMCID: PMC6417859 DOI: 10.7554/elife.44179] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/02/2019] [Indexed: 01/02/2023] Open
Abstract
Prolonged exposure to weak (~1 μT) extremely-low-frequency (ELF, 50/60 Hz) magnetic fields has been associated with an increased risk of childhood leukaemia. One of the few biophysical mechanisms that might account for this link involves short-lived chemical reaction intermediates known as radical pairs. In this report, we use spin dynamics simulations to derive an upper bound of 10 parts per million on the effect of a 1 μT ELF magnetic field on the yield of a radical pair reaction. By comparing this figure with the corresponding effects of changes in the strength of the Earth’s magnetic field, we conclude that if exposure to such weak 50/60 Hz magnetic fields has any effect on human biology, and results from a radical pair mechanism, then the risk should be no greater than travelling a few kilometres towards or away from the geomagnetic north or south pole.
Collapse
Affiliation(s)
- P J Hore
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Bamdad K, Adel Z, Esmaeili M. Complications of nonionizing radiofrequency on divided attention. J Cell Biochem 2019; 120:10572-10575. [PMID: 30714205 DOI: 10.1002/jcb.28343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022]
Abstract
Exposure to electromagnetic fields is considered as a potential hazard for biological systems. The objective of our investigation is the study of probable consequences of radiofrequency electromagnetic fields from Wi-Fi router devices on the short-term memory, and attention's levels. A population consisting of 312 female college students (14 to 17 years old) was elected by cluster random sampling. Teenagers were divided into two groups of control group (Wi-Fi nonusers; n = 138), and experiment group (Wi-Fi users; n = 174). Both groups have been examined using short-term memory tests; selective attention, and also divided attention tests. According to the results, there was no significant difference between using Wi-Fi router devices on levels of selective attentions and short-term memory of the sample students with the control group. However, analyses revealed that there is a significant correlation between the use of Wi-Fi routers and declining levels of divided attentions. Our investigation has demonstrated the adverse consequences of 2.4-2.48 GHz radiofrequency electromagnetic fields of Wi-Fi router devices on divided attention levels of female university students that should be mentioned as a technological risk factor and taken into account by healthcare organizations.
Collapse
Affiliation(s)
- Kourosh Bamdad
- Department of Biology, Payame Noor University (PNU), Iran
| | - Zahra Adel
- Department of Biology, Payame Noor University (PNU), Iran
| | | |
Collapse
|
32
|
Van Huizen AV, Morton JM, Kinsey LJ, Von Kannon DG, Saad MA, Birkholz TR, Czajka JM, Cyrus J, Barnes FS, Beane WS. Weak magnetic fields alter stem cell-mediated growth. SCIENCE ADVANCES 2019; 5:eaau7201. [PMID: 30729158 PMCID: PMC6353618 DOI: 10.1126/sciadv.aau7201] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/17/2018] [Indexed: 05/28/2023]
Abstract
Biological systems are constantly exposed to electromagnetic fields (EMFs) in the form of natural geomagnetic fields and EMFs emitted from technology. While strong magnetic fields are known to change chemical reaction rates and free radical concentrations, the debate remains about whether static weak magnetic fields (WMFs; <1 mT) also produce biological effects. Using the planarian regeneration model, we show that WMFs altered stem cell proliferation and subsequent differentiation via changes in reactive oxygen species (ROS) accumulation and downstream heat shock protein 70 (Hsp70) expression. These data reveal that on the basis of field strength, WMF exposure can increase or decrease new tissue formation in vivo, suggesting WMFs as a potential therapeutic tool to manipulate mitotic activity.
Collapse
Affiliation(s)
- Alanna V. Van Huizen
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Jacob M. Morton
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Luke J. Kinsey
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Donald G. Von Kannon
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Marwa A. Saad
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Taylor R. Birkholz
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Jordan M. Czajka
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Julian Cyrus
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Frank S. Barnes
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Wendy S. Beane
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| |
Collapse
|
33
|
Schäfer J, Holzapfel M, Schmiedel A, Steiner UE, Lambert C. Fine tuning of electron transfer and spin chemistry parameters in triarylamine-bridge-naphthalene diimide dyads by bridge substituents. Phys Chem Chem Phys 2018; 20:27093-27104. [PMID: 30334029 DOI: 10.1039/c8cp04910f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoinduced charge separation and charge recombination in a set of four molecular dyads consisting of a triarylamine donor and a naphthalene diimide acceptor were investigated by time resolved transient absorption spectroscopy with fs and ns time resolution. In these dyads the donor and acceptor are bridged by a meta-conjugated diethynylbenzene bridge whose electronic nature was tuned by small electron donating (OMe, Me) or electron withdrawing (Cl, CN) substituents. While the formation of the transient charge separated states is complete within tens of ps, charge recombination is biphasic with a shorter component of several hundred ns and a longer component of several microseconds. This behaviour could be rationalized by assuming an equilibrium of singlet and triplet charge separated states. Magnetic field dependent measurements showed a strong influence on the biphasic decay kinetics and also a pronounced level crossing effect in the magnetic field affected reaction yield (MARY) spectra caused by a significant exchange coupling. An analysis of the observed kinetics using classical kinetic rate equations yields rate constants for charge separation and charge recombination as well as the exchange interaction splitting in the radical ion pair, all of them showing a delicate dependence on the bridge substituents.
Collapse
Affiliation(s)
- Julian Schäfer
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
34
|
Evaluation of the Effectiveness of Protective Patches on Acupoints to Preserve the Bioenergetic Status against Magnetic Fields. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4732130. [PMID: 30305830 PMCID: PMC6166365 DOI: 10.1155/2018/4732130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/02/2018] [Indexed: 12/02/2022]
Abstract
The potentially harmful nature of electromagnetic fields (EMF) and static magnetic fields (SMF) has become a major problem in recent years. All these elements could be combined to produce cellular responses. For example, the orientation of molecules of water or other complex molecules, growth and cell viability, cell morphology, and intracellular metabolic pathways have demonstrated binding to magnetic fields. The effect of EMF and SMF on humans is a topic of great importance, especially because modern technology has introduced artificial magnetic fields such as those generated by power lines, mobile communications, and medical imaging equipment. A relevant problem is certainly that of professional exposure. The aim of this study was the evaluation of the effectiveness of a commercially available device, Skudo® patches (Edil Natura S.r.l., Novara, Italy), in protecting magnetic resonance operators from the influence of magnetic fields such as those present in the workplace. Skudo® patches are designed to protect microareas of the body from external electromagnetic disturbances. In this study, 10 male Italian volunteers aged between 50 and 60 were enrolled in the hospital. All participants were subjected to measurements at 4 specific time points to evaluate the effectiveness of Skudo® to counteract both EMF and SMF magnetic fields by evaluating the level of bioenergetic reactivity. To perform the measurements, a variant of the Ryodoraku method has been used, based upon the assessment of electropermeability. In particular, 12 acupoints were measured, one for each of the main meridians. This study shows that both SMF and EMF cause an alteration of the body's water system. The application of Skudo® patches determines a regularization of bioenergetic levels related to the water system. The application of Skudo® on the EMF source has suppressed the imbalance effect of the water system found in the subject without any protection.
Collapse
|
35
|
Ponomarenko AT, Tameev AR, Shevchenko VG. Synthesis of polymers and modification of polymeric materials in electromagnetic fields. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Lewis AM, Fay TP, Manolopoulos DE, Kerpal C, Richert S, Timmel CR. On the low magnetic field effect in radical pair reactions. J Chem Phys 2018; 149:034103. [PMID: 30037236 DOI: 10.1063/1.5038558] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Radical pair recombination reactions are known to be sensitive to the application of both low and high magnetic fields. The application of a weak magnetic field reduces the singlet yield of a singlet-born radical pair, whereas the application of a strong magnetic field increases the singlet yield. The high field effect arises from energy conservation: when the magnetic field is stronger than the sum of the hyperfine fields in the two radicals, S → T± transitions become energetically forbidden, thereby reducing the number of pathways for singlet to triplet interconversion. The low field effect arises from symmetry breaking: the application of a weak magnetic field lifts degeneracies among the zero field eigenstates and increases the number of pathways for singlet to triplet interconversion. However, the details of this effect are more subtle and have not previously been properly explained. Here we present a complete analysis of the low field effect in a radical pair containing a single proton and in a radical pair in which one of the radicals contains a large number of hyperfine-coupled nuclear spins. We find that the new transitions that occur when the field is switched on are between S and T0 in both cases, and not between S and T± as has previously been claimed. We then illustrate this result by using it in conjunction with semiclassical spin dynamics simulations to account for the observation of a biphasic-triphasic-biphasic transition with increasing magnetic field strength in the magnetic field effect on the time-dependent survival probability of a photoexcited carotenoid-porphyrin-fullerene radical pair.
Collapse
Affiliation(s)
- Alan M Lewis
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Thomas P Fay
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E Manolopoulos
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Christian Kerpal
- Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Sabine Richert
- Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Christiane R Timmel
- Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
37
|
Budinger TF, Bird MD. MRI and MRS of the human brain at magnetic fields of 14 T to 20 T: Technical feasibility, safety, and neuroscience horizons. Neuroimage 2018; 168:509-531. [DOI: 10.1016/j.neuroimage.2017.01.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/16/2022] Open
|
38
|
Velivetskaya TA, Ignatiev AV, Yakovenko VV, Vysotskiy SV. Experimental studies of the oxygen isotope anomalies (Δ17O) of H2O2 and their relation to radical recombination reactions. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Chen JR, Ke SC. Magnetic field effects on coenzyme B12- and B6-dependent lysine 5,6-aminomutase: switching of the J-resonance through a kinetically competent radical-pair intermediate. Phys Chem Chem Phys 2018; 20:13068-13074. [DOI: 10.1039/c8cp01497c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
External magnetic fields interact with lysine 5,6-aminomutase, through an immobilized radical-pair with constant and large exchange interaction, to switch on J-resonance between singlet and triplet spin states, which have different reactive fates.
Collapse
Affiliation(s)
- Jun-Ru Chen
- Department of Physics
- National Dong Hwa University
- Hualien
- Taiwan
| | - Shyue-Chu Ke
- Department of Physics
- National Dong Hwa University
- Hualien
- Taiwan
| |
Collapse
|
40
|
Japundžić-Žigon N, Šarenac O, Lozić M, Vasić M, Tasić T, Bajić D, Kanjuh V, Murphy D. Sudden death: Neurogenic causes, prediction and prevention. Eur J Prev Cardiol 2017; 25:29-39. [PMID: 29053016 PMCID: PMC5724572 DOI: 10.1177/2047487317736827] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sudden death is a major health problem all over the world. The most common causes of sudden death are cardiac but there are also other causes such as neurological conditions (stroke, epileptic attacks and brain trauma), drugs, catecholamine toxicity, etc. A common feature of all these diverse pathologies underlying sudden death is the imbalance of the autonomic nervous system control of the cardiovascular system. This paper reviews different pathologies underlying sudden death with emphasis on the autonomic nervous system contribution, possibilities of early diagnosis and prognosis of sudden death using various clinical markers including autonomic markers (heart rate variability and baroreflex sensitivity), present possibilities of management and promising prevention by electrical neuromodulation.
Collapse
Affiliation(s)
| | | | - Maja Lozić
- 1 Faculty of Medicine, University of Belgrade, Serbia
| | - Marko Vasić
- 1 Faculty of Medicine, University of Belgrade, Serbia
| | - Tatjana Tasić
- 1 Faculty of Medicine, University of Belgrade, Serbia
| | - Dragana Bajić
- 2 Faculty of Technical Sciences, University of Novi Sad, Serbia
| | - Vladimir Kanjuh
- 3 Department of Medical Sciences, Serbian Academy of Sciences and Arts, Serbia
| | - David Murphy
- 4 School of Clinical Sciences, University of Bristol, UK
| |
Collapse
|
41
|
Warille AA, Altun G, Elamin AA, Kaplan AA, Mohamed H, Yurt KK, El Elhaj A. Skeptical approaches concerning the effect of exposure to electromagnetic fields on brain hormones and enzyme activities. J Microsc Ultrastruct 2017; 5:177-184. [PMID: 30023252 PMCID: PMC6025782 DOI: 10.1016/j.jmau.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 11/24/2022] Open
Abstract
This review discusses the effects of various frequencies of electromagnetic fields (EMF) on brain hormones and enzyme activity. In this context, the mechanism underlying the effects of EMF exposure on tissues generally and cellular pathway specifically has been discussed. The cell membrane plays important roles in mediating enzymatic activities as to response and reacts with extracellular environment. Alterations in the calcium signaling pathways in the cell membrane are activated in response to the effects of EMF exposure. Experimental and epidemiological studies have demonstrated that no changes occur in serum prolactin levels in humans following short-term exposure to 900 Mega Hertz (MHz) EMF emitted by mobile phones. The effects of EMF on melatonin and its metabolite, 6-sulfatoxymelatonin, in humans have also been investigated in the clinical studies to show a disturbance in metabolic activity of melatonin. In addition, although 900 MHz EMF effects on NF-κB inflammation, its effects on NF-κB are not clear. Abbreviations: ELF-EMF, extremely low frequency electromagnetic fields; EMF, electromagnetic fields; RF, Radiofrequency; ROS, reactive oxygen species; VGCCs, voltage-gated calcium channels; MAPK, mitogen-activated phosphokinase; NF-κB, nuclear factor kappa B; ERK-1/2, extracellular signal-regulated kinase; GSH-Px, glutathione peroxidase; JNK, Jun N-terminal kinases; SOD, superoxide dismutase; MnSOD, manganese-dependent superoxide dismutase; GLUT1, glucose transporter 1; GSSG-Rd, glutathione reductase MDA malondialdehyde; NO, nitric oxide; LH, luteinizing hormone; FSH, follicle-stimulating hormone.
Collapse
Affiliation(s)
- Aymen A Warille
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Anatomy, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Abdalla A Elamin
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Hamza Mohamed
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Abubaker El Elhaj
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
42
|
Villarini M, Gambelunghe A, Giustarini D, Ambrosini MV, Fatigoni C, Rossi R, Dominici L, Levorato S, Muzi G, Piobbico D, Mariucci G. No evidence of DNA damage by co-exposure to extremely low frequency magnetic fields and aluminum on neuroblastoma cell lines. Mutat Res 2017; 823:11-21. [PMID: 28985943 DOI: 10.1016/j.mrgentox.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/28/2017] [Accepted: 09/01/2017] [Indexed: 01/30/2023]
Abstract
Whether exposure to 50-60Hz extremely low frequency magnetic fields (ELF-MF) exerts neurotoxic effects is a debated issue. Analogously, the potential role of Aluminum (Al) in neurodegeneration is a matter of controversial debate. As all living organisms are exposed to ELF-MF and/or Al daily, we found investigating the early effects of co-exposure to ELF-MF and Al in SH-SY5Y and SK-N-BE-2 human neuroblastoma (NB) cells intriguing. SH-SY5Y5 and SK-N-BE-2 cells underwent exposure to 50Hz ELF-MF (0.01, 0.1 or 1mT) or AlCl3 (4 or 40μM) or co-exposure to 50Hz ELF-MF and AlCl3 for 1h continuously or 5h intermittently. The effects of the treatment were evaluated in terms of DNA damage, redox status changes and Hsp70 expression. The DNA damage was assessed by Comet assay; the cellular redox status was investigated by measuring the amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) while the inducible Hsp70 expression was evaluated by western blot analysis and real-time RT-PCR. Neither exposure to ELF-MF or AlCl3 alone induced DNA damage, changes in GSH/GSSG ratio or variations in Hsp70 expression with respect to the controls in both NB cell lines. Similarly, co-exposure to ELF-MF and AlCl3 did not have any synergic toxic effects. The results of this in vitro study, which deals with the effects of co-exposure to 50Hz MF and Aluminum, seem to exclude that short-term exposure to ELF-MF in combination with Al can have harmful effects on human SH-SY5Y and SK-N-BE-2 cells.
Collapse
Affiliation(s)
- Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy
| | | | - Daniela Giustarini
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, 53100 Siena, Italy
| | | | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy
| | - Ranieri Rossi
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, 53100 Siena, Italy
| | - Luca Dominici
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy
| | - Sara Levorato
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy
| | - Giacomo Muzi
- Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Giuseppina Mariucci
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy.
| |
Collapse
|
43
|
Binhi VN, Prato FS. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLoS One 2017; 12:e0179340. [PMID: 28654641 PMCID: PMC5487043 DOI: 10.1371/journal.pone.0179340] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/26/2017] [Indexed: 11/19/2022] Open
Abstract
During interplanetary flights in the near future, a human organism will be exposed to prolonged periods of a hypomagnetic field that is 10,000 times weaker than that of Earth's. Attenuation of the geomagnetic field occurs in buildings with steel walls and in buildings with steel reinforcement. It cannot be ruled out also that a zero magnetic field might be interesting in biomedical studies and therapy. Further research in the area of hypomagnetic field effects, as shown in this article, is capable of shedding light on a fundamental problem in biophysics-the problem of primary magnetoreception. This review contains, currently, the most extensive bibliography on the biological effects of hypomagnetic field. This includes both a review of known experimental results and the putative mechanisms of magnetoreception and their explanatory power with respect to the hypomagnetic field effects. We show that the measured correlations of the HMF effect with HMF magnitude and inhomogeneity and type and duration of exposure are statistically absent. This suggests that there is no general biophysical MF target similar for different organisms. This also suggests that magnetoreception is not necessarily associated with evolutionary developed specific magnetoreceptors in migrating animals and magnetotactic bacteria. Independently, there is nonspecific magnetoreception that is common for all organisms, manifests itself in very different biological observables as mostly random reactions, and is a result of MF interaction with magnetic moments at a physical level-moments that are present everywhere in macromolecules and proteins and can sometimes transfer the magnetic signal at the level of downstream biochemical events. The corresponding universal mechanism of magnetoreception that has been given further theoretical analysis allows one to determine the parameters of magnetic moments involved in magnetoreception-their gyromagnetic ratio and thermal relaxation time-and so to better understand the nature of MF targets in organisms.
Collapse
Affiliation(s)
- Vladimir N. Binhi
- A.M. Prokhorov General Physics Institute, Moscow, Russia
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Frank S. Prato
- Lawson Health Research Institute, Ontario, Canada
- University of Western Ontario, Ontario, Canada
| |
Collapse
|
44
|
Akbarnejad Z, Eskandary H, Dini L, Vergallo C, Nematollahi-Mahani SN, Farsinejad A, Abadi MFS, Ahmadi M. Cytotoxicity of temozolomide on human glioblastoma cells is enhanced by the concomitant exposure to an extremely low-frequency electromagnetic field (100Hz, 100G). Biomed Pharmacother 2017; 92:254-264. [PMID: 28551545 DOI: 10.1016/j.biopha.2017.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain cancer that causes high mortality in humans. It responds poorly to the most common cancer treatments, such as surgery, chemo- and radiation therapy. Temozolomide (TMZ) is an alkylating agent that has been widely used to treat GBM; resistance to this drug is often found. One unexplored possibility for overcoming this resistance is a treatment based on concomitant exposure to electromagnetic fields (EMF) and TMZ. Indeed, many evidences show that EMF affects cancer cells and drug performance. In this study, we evaluated the potential synergistic effect of 100μM TMZ and EMF (100Hz, 100G) on two human glioma cells line, i.e., U87 and T98G above single treatments, TMZ or EMF. Co-treatment synergistically enhanced apoptosis in U87 and T98G cells, by increasing the expression of P53, Bax, and Caspase-3 and decreasing that of Bcl-2 and Cyclin-D1. We also observed an increase in reactive oxygen species (ROS) production and the overexpression of the heme oxygenase-1 (HO-1) gene in comparison to controls. In conclusion, since EMF enhanced the apoptotic effect of TMZ, possibly through a redox regulation mechanism, the TMZ/EMF combination may be effective for glioma cancer treating. Further studies are needed to reveal the action mechanism of this possible novel therapeutic approach.
Collapse
Affiliation(s)
- Zeinab Akbarnejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, 76175-113 Kerman, Iran
| | - Hossein Eskandary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, 76175-113 Kerman, Iran; Afzal Research Institute (NGO), 76175-113 Kerman, Iran.
| | - Luciana Dini
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; CNR Nanotec, 73100 Lecce, Italy
| | - Cristian Vergallo
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | | | - Alireza Farsinejad
- Pathology and Stem Cell Research Center, Afzalipour Medical School, Kerman University of Medical Sciences, 76175-113 Kerman, Iran
| | - Maryam Fekri Soofi Abadi
- Pathology and Stem Cell Research Center, Afzalipour Medical School, Kerman University of Medical Sciences, 76175-113 Kerman, Iran
| | - Meysam Ahmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, 76175-113 Kerman, Iran.
| |
Collapse
|
45
|
Calabrò E, Magazù S. Induced-orientation of nitrogen monoxide and azide ion vibrations in human hemoglobin in bidistilled water solution under a static magnetic field. Bioelectromagnetics 2017; 38:447-455. [PMID: 28453873 DOI: 10.1002/bem.22056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/06/2017] [Indexed: 11/09/2022]
Abstract
In this study, we report the effects of static magnetic fields (SMFs) at 200 mT on different hemoglobin aqueous solutions, in the absence and in the presence of sucrose and trehalose, studied by FTIR spectroscopic techniques. Significant decrease in intensity of Amide I and Amide II vibration bands was observed after 6 h exposure for hemoglobin in bidistilled water solution. Also, it was observed that the decrease in intensity of the Amide I band was larger than the Amide II after exposure. This result can be explained assuming that an SMF induces increase of hydrogen bonding in hemoglobin in bidistilled water solution. In particular, the use of second-derivative analysis highlighted two absorption peaks at 1907 and 2022 cm-1 that can be attributed to nitrogen monoxide vibration and antisymmetric stretch of azide ion bound, respectively. These vibrations increased significantly after exposure to the SMF (P < 0.01). This result can be explained assuming that exposure to an SMF induces the orientation of nitrogen monoxide and azide ion ligands toward the direction of the field. Finally, it was observed that the addition of sucrose and trehalose in hemoglobin aqueous solution inhibited such alterations, suggesting that bioprotective effectiveness of these disaccharides occurs after exposure to an SMF. Bioelectromagnetics. 38:447-455, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emanuele Calabrò
- Department of Mathematics and Informatics Sciences, Physics Sciences and Earth Sciences, University of Messina, Messina, Italy
| | - Salvatore Magazù
- Department of Mathematics and Informatics Sciences, Physics Sciences and Earth Sciences, University of Messina, Messina, Italy
| |
Collapse
|
46
|
Godina-Nava JJ, Torres-Vega G, López-Riquelme GO, López-Sandoval E, Samana AR, García Velasco F, Hernández-Aguilar C, Domínguez-Pacheco A. Quantum mechanical model for the anticarcinogenic effect of extremely-low-frequency electromagnetic fields on early chemical hepatocarcinogenesis. Phys Rev E 2017; 95:022416. [PMID: 28297882 DOI: 10.1103/physreve.95.022416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 11/07/2022]
Abstract
Using the conventional Haberkorn approach, it is evaluated the recombination of the radical pair (RP) singlet spin state to study theoretically the cytoprotective effect of an extremely-low-frequency electromagnetic field (ELF-EMF) on early stages of hepatic cancer chemically induced in rats. The proposal is that ELF-EMF modulates the interconversion rate of singlet and triplet spin states of the RP populations modifying the products from the metabolization of carcinogens. Previously, we found that the daily treatment with ELF-EMF 120 Hz inhibited the number and area of preneoplastic lesions in chemical carcinogenesis. The singlet spin population is evaluated diagonalizing the spin density matrix through the Lanczos method in a radical pair mechanism (RPM). Using four values of the interchange energy, we have studied the variations over the singlet population. The low magnetic field effect as a test of the influence over the enzymatic chemical reaction is evaluated calculating the quantum yield. Through a bootstrap technique the range is found for the singlet decay rate for the process. Applying the quantum measurements concept, we addressed the impact toward hepatic cells. The result contributes to improving our understanding of the chemical carcinogenesis process affected by charged particles that damage the DNA.
Collapse
Affiliation(s)
| | - Gabino Torres-Vega
- Departamento de Física CINVESTAV-IPN, Ap. Postal 14-740, CdMex, C.P. 07000, Mexico
| | | | - Eduardo López-Sandoval
- Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Bairro Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Arturo Rodolfo Samana
- Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Bairro Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Fermín García Velasco
- Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Bairro Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Claudia Hernández-Aguilar
- National Polytechnic Institute, Sepi-ESIME, Zacatenco, Professional Unit Adolfo López Mateos, Col. Lindavista, Cd Mex, C.P. 07738, Mexico
| | - Arturo Domínguez-Pacheco
- National Polytechnic Institute, Sepi-ESIME, Zacatenco, Professional Unit Adolfo López Mateos, Col. Lindavista, Cd Mex, C.P. 07738, Mexico
| |
Collapse
|
47
|
Barnes F, Greenebaum B. Comments on Vladimir Binhi and Frank Prato's A physical mechanism of magnetoreception: Extension and analysis. Bioelectromagnetics 2017; 38:322-323. [PMID: 28220941 DOI: 10.1002/bem.22041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/28/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Frank Barnes
- Department of Electrical Computer and Energy Engineering, University of Colorado, Boulder, Colorado
| | - Ben Greenebaum
- Department of Physics, University of Wisconsin-Parkside, Kenosha, Wisconsin
| |
Collapse
|
48
|
Dornelles EB, Goncalves BD, Schott KL, Barbisan F, Unfer TC, Glanzner WG, Machado AK, Cadona FC, Azzolin VF, Montano MAE, Griner J, da Cruz IBM. Cytotoxic effects of moderate static magnetic field exposure on human periphery blood mononuclear cells are influenced by Val16Ala-MnSOD gene polymorphism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5078-5088. [PMID: 28004364 DOI: 10.1007/s11356-016-8176-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Technological advancement has increasingly exposed humans to magnetic fields (MFs). However, more insights are necessary into the potential toxicity of MF exposure as a result of genetic variations related to oxidative metabolism. Therefore, the following study has assessed an in vitro cytotoxic effect of static magnetic field (SMF) (5 mT) on cells with Val16Ala polymorphism (AA, VA, and VV) in the manganese superoxide dismutase gene. Homozygous Val16Ala-superoxide dismutase 2 (SOD2) genotypes present oxidative imbalance that is associated with risk to several chronic degenerative diseases (VV produces less efficient and AA more efficient SOD2 enzyme). Blood samples from healthy adult subject carriers with different Val16Ala-SOD2 genotypes were obtained and exposed to MF at different times (0, 1, 3, 6 h). The cytotoxic effect as well as oxidative stress was evaluated after incubation of 24 h at 37 °C. In addition, apoptosis induction has been analyzed by flow cytometry as well as Bcl-2-associated X protein (BAX), B-cell lymphoma 2 (BCL-2), and caspases 8 and 3 gene expression. SMF cytotoxic effect has been observed in AA cells at all times of exposure, whereas AV cells presented higher mortality only after 6 h of exposure at SMF. Higher apoptosis induction has been observed in AA cells when compared to VV and AV cells. These results suggest a toxicogenetic SMF effect related to an imbalance in SOD2 activity.
Collapse
Affiliation(s)
- Eduardo B Dornelles
- Biological Science Graduate Program: Toxicological Biochemistry, Universidade Federal de Santa Maria, Av Roraima 1000, Prédio 19, Santa Maria, RS, 97105900, Brazil.
| | - Bayard D Goncalves
- Veterinary Medicine Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Karen Lilian Schott
- Biological Science Graduate Program: Toxicological Biochemistry, Universidade Federal de Santa Maria, Av Roraima 1000, Prédio 19, Santa Maria, RS, 97105900, Brazil
| | - Fernanda Barbisan
- Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tais C Unfer
- Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Werner G Glanzner
- Veterinary Medicine Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alencar K Machado
- Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Francine C Cadona
- Biological Science Graduate Program: Toxicological Biochemistry, Universidade Federal de Santa Maria, Av Roraima 1000, Prédio 19, Santa Maria, RS, 97105900, Brazil
| | | | - Marco Aurélio Echart Montano
- Health and Biosciences Post-Graduate Program, Universidade do Oeste de Santa Catarina, Rua Dirceu Giordani, 696, Xanxerê, 89820-000, SC, Brazil
| | - John Griner
- Biological Science Graduate Program: Toxicological Biochemistry, Universidade Federal de Santa Maria, Av Roraima 1000, Prédio 19, Santa Maria, RS, 97105900, Brazil
| | - Ivana B M da Cruz
- Biological Science Graduate Program: Toxicological Biochemistry, Universidade Federal de Santa Maria, Av Roraima 1000, Prédio 19, Santa Maria, RS, 97105900, Brazil
- Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
49
|
Tasić T, Djordjević DM, De Luka SR, Trbovich AM, Japundžić-Žigon N. Static magnetic field reduces blood pressure short-term variability and enhances baro-receptor reflex sensitivity in spontaneously hypertensive rats. Int J Radiat Biol 2017; 93:527-534. [PMID: 28051886 DOI: 10.1080/09553002.2017.1276307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE It has been shown that chronic exposure of young spontaneously hypertensive rats (SHR) to static magnetic field (SMF) delays the development of overt hypertension. Therefore the aim of the present work was to investigate the effects of SMF on autonomic cardiovascular control in adult spontaneously hypertensive rats. MATERIALS AND METHODS Experiments were performed in freely moving spontaneously hypertensive rats equipped with femoral arterial catheter for blood pressure recording. Spontaneously hypertensive rats were exposed for 30 days to upward-oriented SMF (n = 17) or downward-oriented SMF (n = 17) of 16 mT intensity. A control group of spontaneously hypertensive rats (n = 17) was not exposed to SMF. Neurogenic cardiovascular control was evaluated by spectral analysis of arterial blood pressure and heart rate short-term variability and baro-receptor reflex sensitivity using the sequence method. RESULTS Exposure of spontaneously hypertensive rats to both upward- and downward-oriented SMF significantly reduced arterial blood pressure and enhanced baro-receptor reflex sensitivity. Downward-oriented SMF reduced heart rate, too. SMF of either orientation reduced systolic blood pressure variability in very low frequency domain while downward-oriented SMF also reduced low-frequency and increased high frequency domains. CONCLUSION It follows that prolonged exposure to SMF is beneficial for neurogenic cardiovascular control in hypertension.
Collapse
Affiliation(s)
- Tatjana Tasić
- a Institute of Pharmacology , Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade , Belgrade , Serbia
| | - Drago M Djordjević
- b Institute of Pathophysiology , Faculty of Medicine, University of Belgrade , Belgrade , Serbia
| | - Silvio R De Luka
- b Institute of Pathophysiology , Faculty of Medicine, University of Belgrade , Belgrade , Serbia
| | - Alexander M Trbovich
- b Institute of Pathophysiology , Faculty of Medicine, University of Belgrade , Belgrade , Serbia
| | - Nina Japundžić-Žigon
- a Institute of Pharmacology , Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade , Belgrade , Serbia
| |
Collapse
|
50
|
Martínez-Bretón JL, Mendoza B, Miranda-Anaya M, Durán P, Flores-Chávez PL. Artificial reproduction of magnetic fields produced by a natural geomagnetic storm increases systolic blood pressure in rats. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:1753-1760. [PMID: 27094916 DOI: 10.1007/s00484-016-1164-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
The incidence of geomagnetic storms may be associated with changes in circulatory physiology. The way in which the natural variations of the geomagnetic field due to solar activity affects the blood pressure are poorly understood and require further study in controlled experimental designs in animal models. In the present study, we tested whether the systolic arterial pressure (AP) in adult rats is affected by simulated magnetic fields resembling the natural changes of a geomagnetic storm. We exposed adult rats to a linear magnetic profile that simulates the average changes associated to some well-known geomagnetic storm phases: the sudden commencement and principal phase. Magnetic stimulus was provided by a coil inductor and regulated by a microcontroller. The experiments were conducted in the electromagnetically isolated environment of a semi-anechoic chamber. After exposure, AP was determined with a non-invasive method through the pulse on the rat's tail. Animals were used as their own control. Our results indicate that there was no statistically significant effect in AP when the artificial profile was applied, neither in the sudden commencement nor in the principal phases. However, during the experimental period, a natural geomagnetic storm occurred, and we did observe statistically significant AP increase during the sudden commencement phase. Furthermore, when this storm phase was artificially replicated with a non-linear profile, we noticed a 7 to 9 % increase of the rats' AP in relation to a reference value. We suggested that the changes in the geomagnetic field associated with a geomagnetic storm in its first day could produce a measurable and reproducible physiological response in AP.
Collapse
Affiliation(s)
- J L Martínez-Bretón
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D.F, México.
| | - B Mendoza
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D.F, México
| | - M Miranda-Anaya
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias Campus Juriquilla, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D.F, México
| | - P Durán
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Ciudad Universitaria, 04510, México, D.F, México
| | - P L Flores-Chávez
- Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, D.F, 14080, México
| |
Collapse
|