1
|
Brenner DJ, Hlatky LR. Rainer Kurt Sachs 1932-2024. Radiat Res 2024; 202:98-100. [PMID: 38972670 DOI: 10.1667/rade-24-00rks.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
|
2
|
Geometrical Properties of the Nucleus and Chromosome Intermingling Are Possible Major Parameters of Chromosome Aberration Formation. Int J Mol Sci 2022; 23:ijms23158638. [PMID: 35955776 PMCID: PMC9368922 DOI: 10.3390/ijms23158638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Ionizing radiation causes chromosome aberrations, which are possible biomarkers to assess space radiation cancer risks. Using the Monte Carlo codes Relativistic Ion Tracks (RITRACKS) and Radiation-Induced Tracks, Chromosome Aberrations, Repair and Damage (RITCARD), we investigated how geometrical properties of the cell nucleus, irradiated with ion beams of linear energy transfer (LET) ranging from 0.22 keV/μm to 195 keV/μm, influence the yield of simple and complex exchanges. We focused on the effect of (1) nuclear volume by considering spherical nuclei of varying radii; (2) nuclear shape by considering ellipsoidal nuclei of varying thicknesses; (3) beam orientation; and (4) chromosome intermingling by constraining or not constraining chromosomes in non-overlapping domains. In general, small nuclear volumes yield a higher number of complex exchanges, as compared to larger nuclear volumes, and a higher number of simple exchanges for LET < 40 keV/μm. Nuclear flattening reduces complex exchanges for high-LET beams when irradiated along the flattened axis. The beam orientation also affects yields for ellipsoidal nuclei. Reducing chromosome intermingling decreases both simple and complex exchanges. Our results suggest that the beam orientation, the geometry of the cell nucleus, and the organization of the chromosomes within are important parameters for the formation of aberrations that must be considered to model and translate in vitro results to in vivo risks.
Collapse
|
3
|
de Lima MF, Lisboa MDO, Terceiro LEL, Rangel-Pozzo A, Mai S. Chromosome Territories in Hematological Malignancies. Cells 2022; 11:1368. [PMID: 35456046 PMCID: PMC9028803 DOI: 10.3390/cells11081368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Chromosomes are organized in distinct nuclear areas designated as chromosome territories (CT). The structural formation of CT is a consequence of chromatin packaging and organization that ultimately affects cell function. Chromosome positioning can identify structural signatures of genomic organization, especially for diseases where changes in gene expression contribute to a given phenotype. The study of CT in hematological diseases revealed chromosome position as an important factor for specific chromosome translocations. In this review, we highlight the history of CT theory, current knowledge on possible clinical applications of CT analysis, and the impact of CT in the development of hematological neoplasia such as multiple myeloma, leukemia, and lymphomas. Accumulating data on nuclear architecture in cancer allow one to propose the three-dimensional nuclear genomic landscape as a novel cancer biomarker for the future.
Collapse
Affiliation(s)
- Matheus Fabiao de Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Brazil;
| | - Lucas E. L. Terceiro
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| |
Collapse
|
4
|
Wang Q, Lee Y, Pujol-Canadell M, Perrier JR, Smilenov L, Harken A, Garty G, Brenner DJ, Ponnaiya B, Turner HC. Cytogenetic Damage of Human Lymphocytes in Humanized Mice Exposed to Neutrons and X Rays 24 h After Exposure. Cytogenet Genome Res 2021; 161:352-361. [PMID: 34488220 PMCID: PMC8455411 DOI: 10.1159/000516529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Detonation of an improvised nuclear device highlights the need to understand the risk of mixed radiation exposure as prompt radiation exposure could produce significant neutron and gamma exposures. Although the neutron component may be a relatively small percentage of the total absorbed dose, the large relative biological effectiveness (RBE) can induce larger biological DNA damage and cell killing. The objective of this study was to use a hematopoietically humanized mouse model to measure chromosomal DNA damage in human lymphocytes 24 h after in vivo exposure to neutrons (0.3 Gy) and X rays (1 Gy). The human dicentric and cytokinesis-block micronucleus assays were performed to measure chromosomal aberrations in human lymphocytes in vivo from the blood and spleen, respectively. The mBAND assay based on fluorescent in situ hybridization labeling was used to detect neutron-induced chromosome 1 inversions in the blood lymphocytes of the neutron-irradiated mice. Cytogenetics endpoints, dicentrics and micronuclei showed that there was no significant difference in yields between the 2 irradiation types at the doses tested, indicating that neutron-induced chromosomal DNA damage in vivo was more biologically effective (RBE ∼3.3) compared to X rays. The mBAND assay, which is considered a specific biomarker of high-LET neutron exposure, confirmed the presence of clustered DNA damage in the neutron-irradiated mice but not in the X-irradiated mice, 24 h after exposure.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Jay R. Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Lubomir Smilenov
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Andrew Harken
- Radiological Research Accelerator Facility, Columbia University, Irvington, (NY), USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, (NY), USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University, Irvington, (NY), USA
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| |
Collapse
|
5
|
McMahon SJ, Prise KM. A Mechanistic DNA Repair and Survival Model (Medras): Applications to Intrinsic Radiosensitivity, Relative Biological Effectiveness and Dose-Rate. Front Oncol 2021; 11:689112. [PMID: 34268120 PMCID: PMC8276175 DOI: 10.3389/fonc.2021.689112] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
Variations in the intrinsic radiosensitivity of different cells to ionizing radiation is now widely believed to be a significant driver in differences in response to radiotherapy. While the mechanisms of radiosensitivity have been extensively studied in the laboratory, there are a lack of models which integrate this knowledge into a predictive framework. This paper presents an overview of the Medras model, which has been developed to provide a mechanistic framework in which different radiation responses can be modelled and individual responses predicted. This model simulates the repair of radiation-induced DNA damage, incorporating the overall kinetics of repair and its fidelity, to predict a range of biological endpoints including residual DNA damage, mutation, chromosome aberration, and cell death. Validation of this model against a range of exposure types is presented, including considerations of varying radiation qualities and dose-rates. This approach has the potential to inform new tools to deliver mechanistic predictions of radiation sensitivity, and support future developments in treatment personalization.
Collapse
Affiliation(s)
- Stephen Joseph McMahon
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | | |
Collapse
|
6
|
Ingram SP, Henthorn NT, Warmenhoven JW, Kirkby NF, Mackay RI, Kirkby KJ, Merchant MJ. Hi-C implementation of genome structure for in silico models of radiation-induced DNA damage. PLoS Comput Biol 2020; 16:e1008476. [PMID: 33326415 PMCID: PMC7773326 DOI: 10.1371/journal.pcbi.1008476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/30/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Developments in the genome organisation field has resulted in the recent methodology to infer spatial conformations of the genome directly from experimentally measured genome contacts (Hi-C data). This provides a detailed description of both intra- and inter-chromosomal arrangements. Chromosomal intermingling is an important driver for radiation-induced DNA mis-repair. Which is a key biological endpoint of relevance to the fields of cancer therapy (radiotherapy), public health (biodosimetry) and space travel. For the first time, we leverage these methods of inferring genome organisation and couple them to nano-dosimetric radiation track structure modelling to predict quantities and distribution of DNA damage within cell-type specific geometries. These nano-dosimetric simulations are highly dependent on geometry and are benefited from the inclusion of experimentally driven chromosome conformations. We show how the changes in Hi-C contract maps impact the inferred geometries resulting in significant differences in chromosomal intermingling. We demonstrate how these differences propagate through to significant changes in the distribution of DNA damage throughout the cell nucleus, suggesting implications for DNA repair fidelity and subsequent cell fate. We suggest that differences in the geometric clustering for the chromosomes between the cell-types are a plausible factor leading to changes in cellular radiosensitivity. Furthermore, we investigate changes in cell shape, such as flattening, and show that this greatly impacts the distribution of DNA damage. This should be considered when comparing in vitro results to in vivo systems. The effect may be especially important when attempting to translate radiosensitivity measurements at the experimental in vitro level to the patient or human level.
Collapse
Affiliation(s)
- Samuel P. Ingram
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Nicholas T. Henthorn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - John W. Warmenhoven
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Norman F. Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ranald I. Mackay
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Karen J. Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Michael J. Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
7
|
Jin Q, Lin C, Zhu X, Cao Y, Guo C, Wang L. 125I seeds irradiation inhibits tumor growth and induces apoptosis by Ki-67, P21, survivin, livin and caspase-9 expression in lung carcinoma xenografts. Radiat Oncol 2020; 15:238. [PMID: 33059701 PMCID: PMC7559445 DOI: 10.1186/s13014-020-01682-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lung cancer is a fatal disease and a serious health problem worldwide. Patients are usually diagnosed at an advanced stage, and the effectiveness of chemotherapy for such patients is very limited. Iodine 125 seed (125I) irradiation can be used as an important adjuvant treatment for lung carcinoma. The purpose of this study was to examine the role of irradiation by 125I seeds in human lung cancer xenograft model and to determine the underlying mechanisms involved, with a focus on apoptosis. METHODS 40 mice with A549 lung adenocarcinoma xenografts were randomly divided into 4 groups: control group (n = 10), sham seed (0 mCi) implant group (n = 10), 125I seed (0.6 mCi) implant group (n = 10) and 125I seed (0.8 mCi) implant group (n = 10), respectively. The body weight and tumor volume, were recorded every 4 days until the end of the study. Apoptotic cells were checked by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and activities of caspase-3 and caspase-8 enzyme were tested. Expression of P21, survivin, livin, caspase-9 and proliferating cell nuclear antigen (Ki-67) was detected with immunohistochemical staining. RESULTS The results of TUNEL staining assays showed that 125I seed irradiation suppresses the growth of lung cancer xenografts in nude mice and induced apoptosis. The activity of caspase-3 and caspase-8 was significantly higher. The expression levels Ki67, survivin and livin were substantially downregulated, while P21 and caspase-9 protein expression were significantly increased following 125I seed irradiation. This study revealed that 125I seed irradiation could significantly change apoptosis-related protein in human lung cancer xenografts. CONCLUSIONS Overall, our study demonstrates that radiation exposure by 125I seeds could be a new treatment option for lung cancer.
Collapse
Affiliation(s)
- Qing Jin
- Department of Critical Care Medicine, The 903th Hospital of PLA Joint Logistics Support Force, Zhejiang Province, Hangzhou, 310013, China
| | - Cunzhi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Xinhong Zhu
- Department of Internal Medicine, Qingdao Municipal Hospital, Qingdao, 266071, Shandong Province, China
| | - Yiwei Cao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Caihong Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Lijun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
8
|
Forster JC, Douglass MJJ, Phillips WM, Bezak E. Stochastic multicellular modeling of x-ray irradiation, DNA damage induction, DNA free-end misrejoining and cell death. Sci Rep 2019; 9:18888. [PMID: 31827107 PMCID: PMC6906404 DOI: 10.1038/s41598-019-54941-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/19/2019] [Indexed: 01/26/2023] Open
Abstract
The repair or misrepair of DNA double-strand breaks (DSBs) largely determines whether a cell will survive radiation insult or die. A new computational model of multicellular, track structure-based and pO2-dependent radiation-induced cell death was developed and used to investigate the contribution to cell killing by the mechanism of DNA free-end misrejoining for low-LET radiation. A simulated tumor of 1224 squamous cells was irradiated with 6 MV x-rays using the Monte Carlo toolkit Geant4 with low-energy Geant4-DNA physics and chemistry modules up to a uniform dose of 1 Gy. DNA damage including DSBs were simulated from ionizations, excitations and hydroxyl radical interactions along track segments through cell nuclei, with a higher cellular pO2 enhancing the conversion of DNA radicals to strand breaks. DNA free-ends produced by complex DSBs (cDSBs) were able to misrejoin and produce exchange-type chromosome aberrations, some of which were asymmetric and lethal. A sensitivity analysis was performed and conditions of full oxia and anoxia were simulated. The linear component of cell killing from misrejoining was consistently small compared to values in the literature for the linear component of cell killing for head and neck squamous cell carcinoma (HNSCC). This indicated that misrejoinings involving DSBs from the same x-ray (including all associated secondary electrons) were rare and that other mechanisms (e.g. unrejoined ends) may be important. Ignoring the contribution by the indirect effect toward DNA damage caused the DSB yield to drop to a third of its original value and the cDSB yield to drop to a tenth of its original value. Track structure-based cell killing was simulated in all 135306 viable cells of a 1 mm3 hypoxic HNSCC tumor for a uniform dose of 1 Gy.
Collapse
Affiliation(s)
- Jake C Forster
- Department of Nuclear Medicine, South Australia Medical Imaging, The Queen Elizabeth Hospital, Woodville South, SA, 5011, Australia. .,Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Michael J J Douglass
- Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Wendy M Phillips
- Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Eva Bezak
- Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia.,Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| |
Collapse
|
9
|
Lee BH, Wang CKC. A cell-by-cell Monte Carlo simulation for assessing radiation-induced DNA double strand breaks. Phys Med 2019; 62:140-151. [DOI: 10.1016/j.ejmp.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/08/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022] Open
|
10
|
Penninckx S, Cekanaviciute E, Degorre C, Guiet E, Viger L, Lucas S, Costes SV. Dose, LET and Strain Dependence of Radiation-Induced 53BP1 Foci in 15 Mouse Strains Ex Vivo Introducing Novel DNA Damage Metrics. Radiat Res 2019; 192:1-12. [PMID: 31081741 DOI: 10.1667/rr15338.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We present a comprehensive comparative analysis on the repair of radiation-induced DNA damage ex vivo in 15 strains of mice, including 5 inbred reference strains and 10 collaborative-cross strains, of both sexes, totaling 5 million skin fibroblast cells imaged by three-dimensional highthroughput conventional microscopy. Non-immortalized primary skin fibroblasts derived from 76 mice were subjected to increasing doses of both low- and high-LET radiation (X rays; 350 MeV/n 40Ar; 600 MeV/n 56Fe), which are relevant to carcinogenesis and human space exploration. Automated image quantification of 53BP1 radiation-induced foci (RIF) formation and repair during the first 4-48 h postirradiation was performed as a function of dose and LET. Since multiple DNA double-strand breaks (DSBs) are induced in a dose- and LET-dependent manner, our data suggest that when DSBs are formed within the same discrete nuclear region, referred to as the "repair domain", novel mathematical formalisms used to report RIF allowed us to conclude that multiple DSBs can be present in single RIF. Specifically, we observed that the number of RIF per Gy was lower for higher X-ray doses or higher LET particles (i.e., 600 MeV/n 56Fe), suggesting there are more DSBs per RIF when the local absorbed dose increases in the nucleus. The data also clearly show that with more DSBs per RIF, it becomes more difficult for cells to fully resolve RIF. All 15 strains showed the same dose and LET dependence, but strain differences were preserved under various experimental conditions, indicating that the number and sizes of repair domains are modulated by the genetic background of each strain.
Collapse
Affiliation(s)
- Sébastien Penninckx
- a Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.,b Namur Research Institute for Life Science, University of Namur, 5000 Namur, Belgium
| | - Egle Cekanaviciute
- c Universities Space Research Association (USRA), Columbia, Maryland.,d Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| | | | - Elodie Guiet
- a Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Louise Viger
- a Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Stéphane Lucas
- b Namur Research Institute for Life Science, University of Namur, 5000 Namur, Belgium
| | - Sylvain V Costes
- a Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.,d Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| |
Collapse
|
11
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
12
|
Mechanistic Modelling of Radiation Responses. Cancers (Basel) 2019; 11:cancers11020205. [PMID: 30744204 PMCID: PMC6406300 DOI: 10.3390/cancers11020205] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
Radiobiological modelling has been a key part of radiation biology and therapy for many decades, and many aspects of clinical practice are guided by tools such as the linear-quadratic model. However, most of the models in regular clinical use are abstract and empirical, and do not provide significant scope for mechanistic interpretation or making predictions in novel cell lines or therapies. In this review, we will discuss the key areas of ongoing mechanistic research in radiation biology, including physical, chemical, and biological steps, and review a range of mechanistic modelling approaches which are being applied in each area, highlighting the possible opportunities and challenges presented by these techniques.
Collapse
|
13
|
Henthorn NT, Warmenhoven JW, Sotiropoulos M, Aitkenhead AH, Smith EAK, Ingram SP, Kirkby NF, Chadwick A, Burnet NG, Mackay RI, Kirkby KJ, Merchant MJ. Clinically relevant nanodosimetric simulation of DNA damage complexity from photons and protons. RSC Adv 2019; 9:6845-6858. [PMID: 35518487 PMCID: PMC9061037 DOI: 10.1039/c8ra10168j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Relative Biological Effectiveness (RBE), the ratio of doses between radiation modalities to produce the same biological endpoint, is a controversial and important topic in proton therapy. A number of phenomenological models incorporate variable RBE as a function of Linear Energy Transfer (LET), though a lack of mechanistic description limits their applicability. In this work we take a different approach, using a track structure model employing fundamental physics and chemistry to make predictions of proton and photon induced DNA damage, the first step in the mechanism of radiation-induced cell death. We apply this model to a proton therapy clinical case showing, for the first time, predictions of DNA damage on a patient treatment plan. Our model predictions are for an idealised cell and are applied to an ependymoma case, at this stage without any cell specific parameters. By comparing to similar predictions for photons, we present a voxel-wise RBE of DNA damage complexity. This RBE of damage complexity shows similar trends to the expected RBE for cell kill, implying that damage complexity is an important factor in DNA repair and therefore biological effect. Relative Biological Effectiveness (RBE) is a controversial and important topic in proton therapy. This work uses Monte Carlo simulations of DNA damage for protons and photons to probe this phenomenon, providing a plausible mechanistic understanding.![]()
Collapse
Affiliation(s)
- N. T. Henthorn
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - J. W. Warmenhoven
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - M. Sotiropoulos
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - A. H. Aitkenhead
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - E. A. K. Smith
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - S. P. Ingram
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - N. F. Kirkby
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - A. L. Chadwick
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - N. G. Burnet
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - R. I. Mackay
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - K. J. Kirkby
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - M. J. Merchant
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| |
Collapse
|
14
|
Stewart RD, Carlson DJ, Butkus MP, Hawkins R, Friedrich T, Scholz M. A comparison of mechanism-inspired models for particle relative biological effectiveness (RBE). Med Phys 2018; 45:e925-e952. [PMID: 30421808 DOI: 10.1002/mp.13207] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND SIGNIFICANCE The application of heavy ion beams in cancer therapy must account for the increasing relative biological effectiveness (RBE) with increasing penetration depth when determining dose prescriptions and organ at risk (OAR) constraints in treatment planning. Because RBE depends in a complex manner on factors such as the ion type, energy, cell and tissue radiosensitivity, physical dose, biological endpoint, and position within and outside treatment fields, biophysical models reflecting these dependencies are required for the personalization and optimization of treatment plans. AIM To review and compare three mechanism-inspired models which predict the complexities of particle RBE for various ion types, energies, linear energy transfer (LET) values and tissue radiation sensitivities. METHODS The review of models and mechanisms focuses on the Local Effect Model (LEM), the Microdosimetric-Kinetic (MK) model, and the Repair-Misrepair-Fixation (RMF) model in combination with the Monte Carlo Damage Simulation (MCDS). These models relate the induction of potentially lethal double strand breaks (DSBs) to the subsequent interactions and biological processing of DSB into more lethal forms of damage. A key element to explain the increased biological effectiveness of high LET ions compared to MV x rays is the characterization of the number and local complexity (clustering) of the initial DSB produced within a cell. For high LET ions, the spatial density of DSB induction along an ion's trajectory is much greater than along the path of a low LET electron, such as the secondary electrons produced by the megavoltage (MV) x rays used in conventional radiation therapy. The main aspects of the three models are introduced and the conceptual similarities and differences are critiqued and highlighted. Model predictions are compared in terms of the RBE for DSB induction and for reproductive cell survival. RESULTS AND CONCLUSIONS Comparisons of the RBE for DSB induction and for cell survival are presented for proton (1 H), helium (4 He), and carbon (12 C) ions for the therapeutically most relevant range of ion beam energies. The reviewed models embody mechanisms of action acting over the spatial scales underlying the biological processing of potentially lethal DSB into more lethal forms of damage. Differences among the number and types of input parameters, relevant biological targets, and the computational approaches among the LEM, MK and RMF models are summarized and critiqued. Potential experiments to test some of the seemingly contradictory aspects of the models are discussed.
Collapse
Affiliation(s)
- Robert D Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA, 98195, USA
| | - David J Carlson
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Michael P Butkus
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Roland Hawkins
- Radiation Oncology Center, Ochsner Clinic Foundation, New Orleans, LA, 70121, USA
| | | | | |
Collapse
|
15
|
Tello Cajiao JJ, Carante MP, Bernal Rodriguez MA, Ballarini F. Proximity effects in chromosome aberration induction: Dependence on radiation quality, cell type and dose. DNA Repair (Amst) 2018; 64:45-52. [PMID: 29494834 DOI: 10.1016/j.dnarep.2018.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
It is widely accepted that, in chromosome-aberration induction, the (mis-)rejoining probability of two chromosome fragments depends on their initial distance, r. However, several aspects of these "proximity effects" need to be clarified, also considering that they can vary with radiation quality, cell type and dose. A previous work performed by the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model has suggested that, in human lymphocytes and fibroblasts exposed to low-LET radiation, an exponential function of the form exp(-r/r0), which is consistent with free-end (confined) diffusion, describes proximity effects better than a Gaussian function. Herein, the investigation was extended to intermediate- and high-LET. Since the r0 values (0.8 μm for lymphocytes and 0.7 μm for fibroblasts) were taken from the low-LET study, the results were obtained by adjusting only one model parameter, i.e. the yield of "Cluster Lesions" (CLs), where a CL was defined as a critical DNA damage producing two independent chromosome fragments. In lymphocytes, the exponential model allowed reproducing both dose-response curves for different aberrations (dicentrics, centric rings and excess acentrics), and values of F-ratio (dicentrics to centric rings) and G-ratio (interstitial deletions to centric rings). In fibroblasts, a good correspondence was found with the dose-response curves, whereas the G-ratio (and, to a lesser extent, the F-ratio) was underestimated. With increasing LET, F decreased and G increased in both cell types, supporting their role as "fingerprints" of high-LET exposure. A dose-dependence was also found at high LET, where F increased with dose and G decreased, possibly due to inter-track effects. We therefore conclude that, independent of radiation quality, in lymphocytes an exponential function can describe proximity effects at both inter- and intra-chromosomal level; on the contrary, in fibroblasts further studies (experimental and theoretical) are needed to explain the strong bias for intra-arm relative to inter-arm exchanges.
Collapse
Affiliation(s)
- John James Tello Cajiao
- University of Pavia, Physics Department, via Bassi 6, I-27100, Pavia, Italy; INFN (Italian Institute of Nuclear Physics)-Section of Pavia, via Bassi 6, I-27100, Pavia, Italy; Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| | - Mario Pietro Carante
- University of Pavia, Physics Department, via Bassi 6, I-27100, Pavia, Italy; INFN (Italian Institute of Nuclear Physics)-Section of Pavia, via Bassi 6, I-27100, Pavia, Italy.
| | | | - Francesca Ballarini
- University of Pavia, Physics Department, via Bassi 6, I-27100, Pavia, Italy; INFN (Italian Institute of Nuclear Physics)-Section of Pavia, via Bassi 6, I-27100, Pavia, Italy.
| |
Collapse
|
16
|
In Silico Non-Homologous End Joining Following Ion Induced DNA Double Strand Breaks Predicts That Repair Fidelity Depends on Break Density. Sci Rep 2018; 8:2654. [PMID: 29422642 PMCID: PMC5805743 DOI: 10.1038/s41598-018-21111-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/25/2018] [Indexed: 12/19/2022] Open
Abstract
This work uses Monte Carlo simulations to investigate the dependence of residual and misrepaired double strand breaks (DSBs) at 24 hours on the initial damage pattern created during ion therapy. We present results from a nanometric DNA damage simulation coupled to a mechanistic model of Non-Homologous End Joining, capable of predicting the position, complexity, and repair of DSBs. The initial damage pattern is scored by calculating the average number of DSBs within 70 nm from every DSB. We show that this local DSB density, referred to as the cluster density, can linearly predict misrepair regardless of ion species. The models predict that the fraction of residual DSBs is constant, with 7.3% of DSBs left unrepaired following 24 hours of repair. Through simulation over a range of doses and linear energy transfer (LET) we derive simple correlations capable of predicting residual and misrepaired DSBs. These equations are applicable to ion therapy treatment planning where both dose and LET are scored. This is demonstrated by applying the correlations to an example of a clinical proton spread out Bragg peak. Here we see a considerable biological effect past the distal edge, dominated by residual DSBs.
Collapse
|
17
|
Tello JJ, Incerti S, Francis Z, Tran H, Bernal MA. Numerical insight into the Dual Radiation Action Theory. Phys Med 2017; 43:120-126. [PMID: 29195554 DOI: 10.1016/j.ejmp.2017.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022] Open
Abstract
This work studies the first and second order mechanisms for the induction of lethal lesions in DNA after irradiation with protons and α-particles. The purpose is to numerically study the mechanisms behind the Dual Radiation Action Theory (DRAT) for these heavy particles. A genetic material geometrical model with atomic resolution is used. It accounts for the explicit position of 5.47 × 109 base pairs, organized up to the chromatin level. The GEANT4-DNA Monte Carlo code was employed to simulate the interaction of these ions with the genetic material model. The number of lethal lesions induced by one- and two-track mechanisms was determined as a function of dose. Values of the α/β ratio were estimated as well as corresponding relative biological effectiveness (RBE). The number of lethal lesions produced by one-track and two-track mechanisms depends on the dose and squared dose, respectively, as predicted by the DRAT. RBE values consistent with experimental results were found, at least for LET below ∼100 keV/μm. Double strand break spatial distributions are qualitatively analyzed. According to this work, the α parameter determined from cellular surviving curves depends on both the physical α and β parameters introduced here, and on the specific energy deposited by a single track into the region of interest. We found an increment of the β parameter with LET, yet at a slower rate than α so that the α/β ratio increases with LET. In addition, we observed and explained the saturation of the α parameter as the dose increases above ∼6 Gy.
Collapse
Affiliation(s)
- John J Tello
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Brazil; University of Pavia, Physics Department, via Bassi 6, I-27100 Pavia, Italy; INFN-Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - Sébastien Incerti
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France; University of Bordeaux, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Ziad Francis
- Saint Joseph University, Faculty of Science, R.U. Mathematics and Modelling, Department of Physics, Beirut, Lebanon
| | - Hoang Tran
- IRFU/DPhN, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - M A Bernal
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Brazil.
| |
Collapse
|
18
|
Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage. Sci Rep 2016; 6:33290. [PMID: 27624453 PMCID: PMC5022028 DOI: 10.1038/srep33290] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Characterising and predicting the effects of ionising radiation on cells remains challenging, with the lack of robust models of the underlying mechanism of radiation responses providing a significant limitation to the development of personalised radiotherapy. In this paper we present a mechanistic model of cellular response to radiation that incorporates the kinetics of different DNA repair processes, the spatial distribution of double strand breaks and the resulting probability and severity of misrepair. This model enables predictions to be made of a range of key biological endpoints (DNA repair kinetics, chromosome aberration and mutation formation, survival) across a range of cell types based on a set of 11 mechanistic fitting parameters that are common across all cells. Applying this model to cellular survival showed its capacity to stratify the radiosensitivity of cells based on aspects of their phenotype and experimental conditions such as cell cycle phase and plating delay (correlation between modelled and observed Mean Inactivation Doses R(2) > 0.9). By explicitly incorporating underlying mechanistic factors, this model can integrate knowledge from a wide range of biological studies to provide robust predictions and may act as a foundation for future calculations of individualised radiosensitivity.
Collapse
|
19
|
Friedman DA, Tait L, Vaughan ATM. Influence of nuclear structure on the formation of radiation-induced lethal lesions. Int J Radiat Biol 2016; 92:229-40. [DOI: 10.3109/09553002.2016.1144941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
A new classification of interphase nuclei based on spatial organizations of chromosome 8 and 21 for t(8;21) (q22;q22) acute myeloid leukemia by three-dimensional fluorescence in situ hybridization. Leuk Res 2015; 39:1414-20. [DOI: 10.1016/j.leukres.2015.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/17/2015] [Accepted: 09/13/2015] [Indexed: 01/16/2023]
|
21
|
Berardinelli F, De Vitis M, Nieri D, Cherubini R, De Nadal V, Gerardi S, Tanzarella C, Sgura A, Antoccia A. mBAND and mFISH analysis of chromosomal aberrations and breakpoint distribution in chromosome 1 of AG01522 human fibroblasts that were exposed to radiation of different qualities. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:55-63. [DOI: 10.1016/j.mrgentox.2015.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 11/26/2022]
|
22
|
Stewart RD, Streitmatter SW, Argento DC, Kirkby C, Goorley JT, Moffitt G, Jevremovic T, Sandison GA. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions. Phys Med Biol 2015; 60:8249-74. [PMID: 26449929 DOI: 10.1088/0031-9155/60/21/8249] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, (137)Cs γ-rays, neutrons and light ions relative to γ-rays from (60)Co in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that (137)Cs γ-rays are about 1.7% more effective at creating DSB than γ-rays from (60)Co (RBEDSB = 1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than (60)Co. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as (60)Co γ-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer.
Collapse
Affiliation(s)
- Robert D Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang Z, Zhao Z, Lu J, Chen Z, Mao A, Teng G, Liu F. A comparison of the biological effects of 125I seeds continuous low-dose-rate radiation and 60Co high-dose-rate gamma radiation on non-small cell lung cancer cells. PLoS One 2015; 10:e0133728. [PMID: 26266801 PMCID: PMC4534329 DOI: 10.1371/journal.pone.0133728] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/01/2015] [Indexed: 11/30/2022] Open
Abstract
Objectives To compare the biological effects of 125I seeds continuous low-dose-rate (CLDR) radiation and 60Co γ-ray high-dose-rate (HDR) radiation on non-small cell lung cancer (NSCLC) cells. Materials and Methods A549, H1299 and BEAS-2B cells were exposed to 125I seeds CLDR radiation or 60Co γ-ray HDR radiation. The survival fraction was determined using a colony-forming assay. The cell cycle progression and apoptosis were detected by flow cytometry (FCM). The expression of the apoptosis-related proteins caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, BAX and Bcl-2 were detected by western blot assay. Results After irradiation with 125I seeds CLDR radiation, there was a lower survival fraction, more pronounced cell cycle arrest (G1 arrest and G2/M arrest in A549 and H1299 cells, respectively) and a higher apoptotic ratio for A549 and H1299 cells than after 60Co γ-ray HDR radiation. Moreover, western blot assays revealed that 125I seeds CLDR radiation remarkably up-regulated the expression of Bax, cleaved-caspase-3 and cleaved-PARP proteins and down-regulated the expression of Bcl-2 proteins in A549 and H1299 cells compared with 60Co γ-ray HDR radiation. However, there was little change in the apoptotic ratio and expression of apoptosis-related proteins in normal BEAS-2B cells receiving the same treatment. Conclusions 125I seeds CLDR radiation led to remarkable growth inhibition of A549 and H1299 cells compared with 60Co HDR γ-ray radiation; A549 cells were the most sensitive to radiation, followed by H1299 cells. In contrast, normal BEAS-2B cells were relatively radio-resistant. The imbalance of the Bcl-2/Bax ratio and the activation of caspase-3 and PARP proteins might play a key role in the anti-proliferative effects induced by 125I seeds CLDR radiation, although other possibilities have not been excluded and will be investigated in future studies.
Collapse
Affiliation(s)
- Zhongmin Wang
- Institution of Molecular Imaging, Southeast University, Nanjing, China
- Department of Interventional Radiology, The Third Affiliated Hospital of the Medical College Shihezi University, Xinjiang, China
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenzhen Zhao
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Interventional Radiology, Shanghai St. Luke’s Hospital, Shanghai, China
| | - Jian Lu
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijin Chen
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiwu Mao
- Department of Interventional Radiology, Shanghai St. Luke’s Hospital, Shanghai, China
| | - Gaojun Teng
- Institution of Molecular Imaging, Southeast University, Nanjing, China
- * E-mail:
| | - Fenju Liu
- Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Antonelli F, Campa A, Esposito G, Giardullo P, Belli M, Dini V, Meschini S, Simone G, Sorrentino E, Gerardi S, Cirrone GAP, Tabocchini MA. Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death. Radiat Res 2015; 183:417-31. [PMID: 25844944 DOI: 10.1667/rr13855.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The spatial distribution of radiation-induced DNA breaks within the cell nucleus depends on radiation quality in terms of energy deposition pattern. It is generally assumed that the higher the radiation linear energy transfer (LET), the greater the DNA damage complexity. Using a combined experimental and theoretical approach, we examined the phosphorylation-dephosphorylation kinetics of radiation-induced γ-H2AX foci, size distribution and 3D focus morphology, and the relationship between DNA damage and cellular end points (i.e., cell killing and lethal mutations) after exposure to gamma rays, protons, carbon ions and alpha particles. Our results showed that the maximum number of foci are reached 30 min postirradiation for all radiation types. However, the number of foci after 0.5 Gy of each radiation type was different with gamma rays, protons, carbon ions and alpha particles inducing 12.64 ± 0.25, 10.11 ± 0.40, 8.84 ± 0.56 and 4.80 ± 0.35 foci, respectively, which indicated a clear influence of the track structure and fluence on the numbers of foci induced after a dose of 0.5 Gy for each radiation type. The γ-H2AX foci persistence was also dependent on radiation quality, i.e., the higher the LET, the longer the foci persisted in the cell nucleus. The γ-H2AX time course was compared with cell killing and lethal mutation and the results highlighted a correlation between cellular end points and the duration of γ-H2AX foci persistence. A model was developed to evaluate the probability that multiple DSBs reside in the same gamma-ray focus and such probability was found to be negligible for doses lower than 1 Gy. Our model provides evidence that the DSBs inside complex foci, such as those induced by alpha particles, are not processed independently or with the same time constant. The combination of experimental, theoretical and simulation data supports the hypothesis of an interdependent processing of closely associated DSBs, possibly associated with a diminished correct repair capability, which affects cell killing and lethal mutation.
Collapse
Affiliation(s)
- F Antonelli
- a Health and Technology Department, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Terol J, Ibañez V, Carbonell J, Alonso R, Estornell LH, Licciardello C, Gut IG, Dopazo J, Talon M. Involvement of a citrus meiotic recombination TTC-repeat motif in the formation of gross deletions generated by ionizing radiation and MULE activation. BMC Genomics 2015; 16:69. [PMID: 25758634 PMCID: PMC4334395 DOI: 10.1186/s12864-015-1280-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 01/26/2015] [Indexed: 02/07/2023] Open
Abstract
Background Transposable-element mediated chromosomal rearrangements require the involvement of two transposons and two double-strand breaks (DSB) located in close proximity. In radiobiology, DSB proximity is also a major factor contributing to rearrangements. However, the whole issue of DSB proximity remains virtually unexplored. Results Based on DNA sequencing analysis we show that the genomes of 2 derived mutations, Arrufatina (sport) and Nero (irradiation), share a similar 2 Mb deletion of chromosome 3. A 7 kb Mutator-like element found in Clemenules was present in Arrufatina in inverted orientation flanking the 5′ end of the deletion. The Arrufatina Mule displayed “dissimilar” 9-bp target site duplications separated by 2 Mb. Fine-scale single nucleotide variant analyses of the deleted fragments identified a TTC-repeat sequence motif located in the center of the deletion responsible of a meiotic crossover detected in the citrus reference genome. Conclusions Taken together, this information is compatible with the proposal that in both mutants, the TTC-repeat motif formed a triplex DNA structure generating a loop that brought in close proximity the originally distinct reactive ends. In Arrufatina, the loop brought the Mule ends nearby the 2 distinct insertion target sites and the inverted insertion of the transposable element between these target sites provoked the release of the in-between fragment. This proposal requires the involvement of a unique transposon and sheds light on the unresolved question of how two distinct sites become located in close proximity. These observations confer a crucial role to the TTC-repeats in fundamental plant processes as meiotic recombination and chromosomal rearrangements. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1280-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113, Valencia, Spain.
| | - Victoria Ibañez
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113, Valencia, Spain.
| | - José Carbonell
- Centro de Investigación Principe Felipe (CIPF), Avda, Autopista del Saler, 16-3, 46012, Valencia, Spain.
| | - Roberto Alonso
- Centro de Investigación Principe Felipe (CIPF), Avda, Autopista del Saler, 16-3, 46012, Valencia, Spain.
| | - Leandro H Estornell
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113, Valencia, Spain.
| | - Concetta Licciardello
- CRA-ACM, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Corso Savoia 190, 95024, Acireale, Catania, Italy.
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona, 08028, Barcelona, Spain.
| | - Joaquín Dopazo
- Centro de Investigación Principe Felipe (CIPF), Avda, Autopista del Saler, 16-3, 46012, Valencia, Spain.
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113, Valencia, Spain.
| |
Collapse
|
26
|
Vadhavkar N, Pham C, Georgescu W, Deschamps T, Heuskin AC, Tang J, Costes SV. Combinatorial DNA Damage Pairing Model Based on X-Ray-Induced Foci Predicts the Dose and LET Dependence of Cell Death in Human Breast Cells. Radiat Res 2014; 182:273-81. [DOI: 10.1667/rr13792.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Girst S, Hable V, Drexler GA, Greubel C, Siebenwirth C, Haum M, Friedl AA, Dollinger G. Subdiffusion supports joining of correct ends during repair of DNA double-strand breaks. Sci Rep 2014; 3:2511. [PMID: 23979012 PMCID: PMC3753591 DOI: 10.1038/srep02511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/18/2013] [Indexed: 12/03/2022] Open
Abstract
The mobility of damaged chromatin regions in the nucleus may affect the probability of mis-repair. In this work, live-cell observation and distance tracking of GFP-tagged DNA damage response protein MDC1 was used to study the random-walk behaviour of chromatin domains containing radiation-induced DNA double-strand breaks (DSB). Our measurements indicate a subdiffusion-type random walk process with similar time dependence for isolated and clustered DSBs that were induced by 20 MeV proton or 43 MeV carbon ion micro-irradiation. As compared to normal diffusion, subdiffusion enhances the probability that both ends of a DSB meet, thus promoting high efficiency DNA repair. It also limits their probability of long-range movements and thus lowers the probability of mis-rejoining and chromosome aberrations.
Collapse
Affiliation(s)
- S Girst
- Angewandte Physik und Messtechnik LRT2, Universität der Bundeswehr München, 85577 Neubiberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin. Mutat Res 2013; 750:56-66. [PMID: 23958412 DOI: 10.1016/j.mrfmmm.2013.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 02/05/2023]
Abstract
Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment.
Collapse
|
29
|
Sankaranarayanan K, Taleei R, Rahmanian S, Nikjoo H. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells. Mutat Res 2013; 753:114-130. [PMID: 23948232 DOI: 10.1016/j.mrrev.2013.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/27/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022]
Abstract
While much is known about radiation-induced DNA double-strand breaks (DSBs) and their repair, the question of how deletions of different sizes arise as a result of the processing of DSBs by the cell's repair systems has not been fully answered. In order to bridge this gap between DSBs and deletions, we critically reviewed published data on mechanisms pertaining to: (a) repair of DNA DSBs (from basic studies in this area); (b) formation of naturally occurring structural variation (SV) - especially of deletions - in the human genome (from genomic studies) and (c) radiation-induced mutations and structural chromosomal aberrations in mammalian somatic cells (from radiation mutagenesis and radiation cytogenetic studies). The specific aim was to assess the relative importance of the postulated mechanisms in generating deletions in the human genome and examine whether empirical data on radiation-induced deletions in mouse germ cells are consistent with predictions of these mechanisms. The mechanisms include (a) NHEJ, a DSB repair process that does not require any homology and which functions in all stages of the cell cycle (and is of particular relevance in G0/G1); (b) MMEJ, also a DSB repair process but which requires microhomology and which presumably functions in all cell cycle stages; (c) NAHR, a recombination-based DSB repair mechanism which operates in prophase I of meiosis in germ cells; (d) MMBIR, a microhomology-mediated, replication-based mechanism which operates in the S phase of the cell cycle, and (e) strand slippage during replication (involved in the origin of small insertions and deletions (INDELs). Our analysis permits the inference that, between them, these five mechanisms can explain nearly all naturally occurring deletions of different sizes identified in the human genome, NAHR and MMBIR being potentially more versatile in this regard. With respect to radiation-induced deletions, the basic studies suggest that those arising as a result of the operation of NHEJ/MMEJ processes, as currently formulated, are expected to be relatively small. However, data on induced mutations in mouse spermatogonial stem cells (irradiation in G0/G1 phase of the cell cycle and DSB repair presumed to be via NHEJ predominantly) show that most are associated with deletions of different sizes, some in the megabase range. There is thus a 'discrepancy' between what the basic studies suggest and the empirical observations in mutagenesis studies. This discrepancy, however, is only an apparent but not a real one. It can be resolved by considering the issue of deletions in the broader context of and in conjunction with the organization of chromatin in chromosomes and nuclear architecture, the conceptual framework for which already exists in studies carried out during the past fifteen years or so. In this paper, we specifically hypothesize that repair of DSBs induced in chromatin loops may offer a basis to explain the induction of deletions of different sizes and suggest an approach to test the hypothesis. We emphasize that the bridging of the gap between induced DSB and resulting deletions of different sizes is critical for current efforts in computational modeling of genetic risks.
Collapse
Affiliation(s)
- Krishnaswami Sankaranarayanan
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Instituet, Box 260, Stockholm SE 17176, Sweden
| | - Reza Taleei
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Instituet, Box 260, Stockholm SE 17176, Sweden
| | - Shirin Rahmanian
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Instituet, Box 260, Stockholm SE 17176, Sweden
| | - Hooshang Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Instituet, Box 260, Stockholm SE 17176, Sweden.
| |
Collapse
|
30
|
Foster HA, Estrada-Girona G, Themis M, Garimberti E, Hill MA, Bridger JM, Anderson RM. Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells. Mutat Res 2013; 756:66-77. [PMID: 23791770 DOI: 10.1016/j.mrgentox.2013.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/17/2023]
Abstract
It is well established that chromosomes exist in discrete territories (CTs) in interphase and are positioned in a cell-type specific probabilistic manner. The relative localisation of individual CTs within cell nuclei remains poorly understood, yet many cancers are associated with specific chromosome rearrangements and there is good evidence that relative territorial position influences their frequency of exchange. To examine this further, we characterised the complexity of radiation-induced chromosome exchanges in normal human bronchial epithelial (NHBE) cells by M-FISH analysis of PCC spreads and correlated the exchanges induced with their preferred interphase position, as determined by 1/2-colour 2D-FISH analysis, at the time of irradiation. We found that the frequency and complexity of aberrations induced were reduced in ellipsoid NHBE cells in comparison to previous observations in spherical cells, consistent with aberration complexity being dependent upon the number and proximity of damaged CTs, i.e. lesion proximity. To ask if particular chromosome neighbourhoods could be identified we analysed all radiation-induced pair-wise exchanges using SCHIP (statistics for chromosome interphase positioning) and found that exchanges between chromosomes (1;13), (9;17), (9;18), (12;18) and (16;21) all occurred more often than expected assuming randomness. All of these pairs were also found to be either sharing similar preferred positions in interphase and/or sharing neighbouring territory boundaries. We also analysed a human small cell lung cancer cell line, DMS53, by M-FISH observing the genome to be highly rearranged, yet possessing rearrangements also involving chromosomes (1;13) and (9;17). Our findings show evidence for the occurrence of non-random exchanges that may reflect the territorial organisation of chromosomes in interphase at time of damage and highlight the importance of cellular geometry for the induction of aberrations of varying complexity after exposure to both low and high-LET radiation.
Collapse
Affiliation(s)
- Helen A Foster
- Centre for Cell and Chromosome Biology, Division of Biosciences, Brunel University, West London UB8 3PH, UK; Centre for Infection, Immunity and Disease Mechanisms, Division of Biosciences, Brunel University, West London UB8 3PH, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Barnard S, Bouffler S, Rothkamm K. The shape of the radiation dose response for DNA double-strand break induction and repair. Genome Integr 2013; 4:1. [PMID: 23522792 PMCID: PMC3616853 DOI: 10.1186/2041-9414-4-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/18/2013] [Indexed: 12/22/2022] Open
Abstract
DNA double-strand breaks are among the most deleterious lesions induced by ionising radiation. A range of inter-connected cellular response mechanisms has evolved to enable their efficient repair and thus protect the cell from the harmful consequences of un- or mis-repaired breaks which may include early effects such as cell killing and associated acute toxicities and late effects such as cancer. A number of studies suggest that the induction and repair of double-strand breaks may not always occur linearly with ionising radiation dose. Here we have aimed to identify and discuss some of the biological and methodological factors that can potentially modify the shape of the dose response curve obtained for these endpoints using the most common assays for double-strand breaks, pulsed-field gel electrophoresis and microscopic scoring of radiation-induced foci.
Collapse
Affiliation(s)
- Stephen Barnard
- Health Protection Agency Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK.
| | | | | |
Collapse
|
32
|
Eidelman YA, Slanina SV, Salnikov IV, Andreev SG. Mechanistic modelling allows to assess pathways of DNA lesion interactions underlying chromosome aberration formation. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412120022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Li S, Heermann DW. Using chimaeric expression sequence tag as the reference to identify three-dimensional chromosome contacts. DNA Res 2012; 20:45-53. [PMID: 23213109 PMCID: PMC3576657 DOI: 10.1093/dnares/dss032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription-induced chimaeric transcripts, the potential post-transcriptional processing products, might reflect the spatial proximity of actively transcribed genes co-localized in transcription factories. A growing number of expression data deposited in databases provide us with the raw material for screening such chimaeric transcripts and using them as the probes to identify interactions between genes in cis or in trans. Based on the high-quality chimaeric transcripts gleaned from human expression sequence tag data with selection criteria, we identified the patterns of inter- and intrachromosomal gene–gene interactions. On top the contact pattern from interchromosomal interactions, we also observed an exponential behaviour of the intrachromosomal interactions within a certain length scale, which is consistent with the independent experimental results from Hi-C screening and with the Random Loop Model. A compatible result is found for mouse. Transcription-induced chimaeric transcripts, most of which might be accidental products with trivial functions, shed light on the spatial organization of chromosomes. These inter- and intrachromosomal interactions might contribute to the compaction of chromosomes, their segregation and formation of the chromosome territories, and their spatial distribution within the nucleus.
Collapse
Affiliation(s)
- Songling Li
- Theoretical Biophysics Group, Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
34
|
Gandhi M, Evdokimova V, Nikiforov YE. Frequency of close positioning of chromosomal loci detected by FRET correlates with their participation in carcinogenic rearrangements in human cells. Genes Chromosomes Cancer 2012; 51:1037-44. [PMID: 22887574 DOI: 10.1002/gcc.21988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/01/2012] [Indexed: 11/05/2022] Open
Abstract
It has been well established that genes participating in oncogenic rearrangements are non-randomly positioned and frequently close to each other in human cell nuclei. However, the actual distance between these fusion partners has never been determined. The phenomenon of fluorescence resonance energy transfer (FRET) is observed when a donor fluorophore is close (<10 nm) to transfer some of it energy to an acceptor fluorophore. The aim of this study was to validate the use of FRET on directly labeled DNA molecules to assess the frequency of positioning at <10 nm distances between genes known to be involved in rearrangement and to correlate it with their probability to undergo rearrangement. In the validation experiments, the frequency of FRET-sensitized emission (SE) was found to be 93-96% between probes for the immediately adjacent chromosomal regions as compared to 0.1-0.2% between probes for the random loci located on large linear separation. Further, we found that the frequency of FRET-SE between four pairs of genes that form rearrangements in thyroid cancer was 5% for RET and CCDC6, 4% for RET and NCOA4, 2% for BRAF and AKAP9, and 2% for NTRK1 and TPR. Moreover, the frequency with which FRET was observed showed strong correlation (r = 0.9871) with the prevalence of respective rearrangements in thyroid cancer. Our findings demonstrate that FRET can be used as a technique to analyze proximity between specific DNA regions and that the frequency of gene positioning at distances allowing FRET correlates with their probability to undergo chromosomal rearrangements.
Collapse
Affiliation(s)
- Manoj Gandhi
- Department of Pathology, University of Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
35
|
Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci U S A 2011; 109:443-8. [PMID: 22184222 DOI: 10.1073/pnas.1117849108] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The concept of DNA "repair centers" and the meaning of radiation-induced foci (RIF) in human cells have remained controversial. RIFs are characterized by the local recruitment of DNA damage sensing proteins such as p53 binding protein (53BP1). Here, we provide strong evidence for the existence of repair centers. We used live imaging and mathematical fitting of RIF kinetics to show that RIF induction rate increases with increasing radiation dose, whereas the rate at which RIFs disappear decreases. We show that multiple DNA double-strand breaks (DSBs) 1 to 2 μm apart can rapidly cluster into repair centers. Correcting mathematically for the dose dependence of induction/resolution rates, we observe an absolute RIF yield that is surprisingly much smaller at higher doses: 15 RIF/Gy after 2 Gy exposure compared to approximately 64 RIF/Gy after 0.1 Gy. Cumulative RIF counts from time lapse of 53BP1-GFP in human breast cells confirmed these results. The standard model currently in use applies a linear scale, extrapolating cancer risk from high doses to low doses of ionizing radiation. However, our discovery of DSB clustering over such large distances casts considerable doubts on the general assumption that risk to ionizing radiation is proportional to dose, and instead provides a mechanism that could more accurately address risk dose dependency of ionizing radiation.
Collapse
|
36
|
Hada M, Wu H, Cucinotta FA. mBAND analysis for high- and low-LET radiation-induced chromosome aberrations: a review. Mutat Res 2011; 711:187-192. [PMID: 21232544 DOI: 10.1016/j.mrfmmm.2010.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 05/30/2023]
Abstract
During long-term space travel or cancer therapy, humans are exposed to high linear energy transfer (LET) energetic heavy ions. High-LET radiation is much more effective than low-LET radiation in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, and cytogenetic damage can be utilized as a biomarker for radiation insults. Epidemiological data, mainly from survivors of the atomic bomb detonations in Japan, have enabled risk estimation from low-LET radiation exposures. The identification of a cytogenetic signature that distinguishes high- from low-LET exposure remains a long-term goal in radiobiology. Recently developed fluorescence in situ hybridization (FISH)-painting methodologies have revealed unique endpoints related to radiation quality. Heavy-ions induce a high fraction of complex-type exchanges, and possibly unique chromosome rearrangements. This review will concentrate on recent data obtained with multicolor banding in situ hybridization (mBAND) methods in mammalian cells exposed to low- and high-LET radiations. Chromosome analysis with mBAND technique allows detection of both inter- and intrachromosomal exchanges, and also distribution of the breakpoints of aberrations.
Collapse
Affiliation(s)
- Megumi Hada
- NASA Johnson Space Center, Houston, TX 77058, USA; Universities Space Research Association, Houston, TX 77058, USA.
| | | | | |
Collapse
|
37
|
Schmid TE, Oestreicher U, Molls M, Schmid E. Alpha particles induce different F values in monocellular layers of settled and attached human lymphocytes. Radiat Res 2011; 176:226-33. [PMID: 21631288 DOI: 10.1667/rr2574.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is rapidly increasing information on the issue of three-dimensional nuclear architecture, according to which chromosomes are organized in localized territories and chromosome arms in exclusive domains within a given territory. The aim of the present study was to investigate the impact of different cell exposure conditions on cytogenetic damage induced by high-LET radiation. To this end the yield ratio of dicentrics to centric rings (F value) induced by (241)Am α particles was analyzed in monolayer cultures of human lymphocytes that were either settled or attached to foils, simulating a rounded or spread out cellular geometry, respectively. Monolayers were exposed in special irradiation chambers to 0.1 and 1.0 Gy and subsequently analyzed for chromosome aberrations. Independent of these different dose levels, significantly different F values of 10.07 ± 1.73 and 4.27 ± 0.44 have been determined in attached and settled lymphocytes, respectively. Since the diameter of nuclei vertically traversed by α particles in attached cells is about one-half that in settled cells, these F values support the postulate that proximity effects regarding the chromatin geometry in flattened or spherical human lymphocytes influence the formation of high-LET radiation-induced dicentrics and centric rings. A comparison with our earlier data sets obtained for both in vitro and in vivo exposure of human lymphocytes to α particles or (137)Cs γ rays supports the notion that the F value depends on the radiation quality when investigations are confined to spherical human lymphocytes. Thus the F value should not be ruled out as a practical chromosomal "fingerprint" for past exposure to high-LET radiation.
Collapse
Affiliation(s)
- T E Schmid
- Klinikum Rechts der Isar, Department of Radiation Oncology, Technische Universität München, D-81675 München, Germany.
| | | | | | | |
Collapse
|
38
|
Hada M, Zhang Y, Feiveson A, Cucinotta FA, Wu H. Association of inter- and intrachromosomal exchanges with the distribution of low- and high-LET radiation-induced breaks in chromosomes. Radiat Res 2011; 176:25-37. [PMID: 21466383 DOI: 10.1667/rr2433.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To study the effects of low- and high-linear energy transfer (LET) radiation on break locations within a chromosome, we exposed human epithelial cells in vitro to (137)Cs γ rays at both low and high dose rates, secondary neutrons at a low dose rate, and 600 MeV/u iron ions at a high dose rate. Breakpoints were identified using multicolor banding in situ hybridization (mBAND), which paints chromosome 3 in 23 different colored bands. For all four radiation scenarios, breakpoint distributions were found to be different from the predicted distribution based on band width. Detailed analysis of chromosome fragment ends involved in inter- or intrachromosomal exchanges revealed that the distributions of fragment ends participating in interchromosomal exchanges were similar between the two low-LET radiation dose rates and between the two high-LET radiation types, but the distributions were less similar between low- and high-LET radiations. For fragment ends participating in intrachromosomal exchanges, the distributions for all four radiation scenarios were similar, with clusters of breaks found in three regions. Analysis of the locations of the two fragment ends in chromosome 3 that joined to form an intrachromosomal exchange demonstrated that two breaks with a greater genomic separation can be more likely to rejoin than two closer breaks, indicating that chromatin folding can play an important role in the rejoining of chromosome breaks. Comparison of the breakpoint distributions to the distributions of genes indicated that the gene-rich regions do not necessarily contain more breaks. In general, breakpoint distributions depend on whether a chromosome fragment joins with another fragment in the same chromosome or with a fragment from a different chromosome.
Collapse
Affiliation(s)
- Megumi Hada
- NASA Johnson Space Center, Houston, Texas 77058, USA
| | | | | | | | | |
Collapse
|
39
|
Tsuchimoto T, Sakata KI, Someya M, Yamamoto H, Hirayama R, Matsumoto Y, Furusawa Y, Hareyama M. Gene expression associated with DNA-dependent protein kinase activity under normoxia, hypoxia, and reoxygenation. JOURNAL OF RADIATION RESEARCH 2011; 52:464-471. [PMID: 21905307 DOI: 10.1269/jrr.10137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Tadashi Tsuchimoto
- Department of Radiology, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nagasawa H, Brogan JR, Peng Y, Little JB, Bedford JS. Some unsolved problems and unresolved issues in radiation cytogenetics: A review and new data on roles of homologous recombination and non-homologous end joining. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 701:12-22. [DOI: 10.1016/j.mrgentox.2010.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/09/2010] [Indexed: 12/14/2022]
|
41
|
Martin LD, Belch AR, Pilarski LM. Promiscuity of translocation partners in multiple myeloma. J Cell Biochem 2010; 109:1085-94. [DOI: 10.1002/jcb.22499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Kanda R, Minamihisamatsu M, Tsuji S, Ohmachi Y, Hiraoka T, Shimada Y, Ogiu T, Ohno T, Hayata I. Investigation of new cytogenetic biomarkers specific to high-LET radiation usingin vivoandin vitroexposed human lymphocytes. Int J Radiat Biol 2009; 82:483-91. [PMID: 16882620 DOI: 10.1080/09553000600863064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To find detectable cytogenetic biomarkers that can offer information about the radiation quality of in vivo exposure retrospectively. MATERIALS AND METHODS Chromosome-type aberrations of peripheral lymphocytes of uterine cancer patients that received internal gamma- and external X-ray therapy or carbon beam therapy and of victims severely exposed to neutrons and gamma-rays in a criticality accident that occurred in Tokai-mura, Japan were analysed. Data obtained from in vitro irradiation experiments using 60Co gamma-rays and 10 MeV neutrons were compared with the in vivo exposure data. RESULTS The ratio of acentric rings to dicentric chromosomes (termed RaD ratio) and that of excess fragments to dicentrics (termed EfD ratio) showed significant (p < 0.05) differences between the two groups of cancer patients, and these ratios for accidental victims were in between the values of the two groups of cancer patients. The in vitro studies using doses equivalent to 1 - 3 Gy of gamma-rays have confirmed that the EfD ratios were increased with the high LET (linear energy transfer) and RaD ratios decreased. CONCLUSION The present data show that the RaD and EfD ratios can be used as cytogenetic biomarkers of exposure to high-LET radiation at least within a few years of exposure.
Collapse
Affiliation(s)
- R Kanda
- Radiation Center for Radiation Protection, National Institute of Radiological Sciences, Anagawa, Chiba, Japan. kanda_r_nirs.go.jp
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gobert FN, Lamoureux M, Hervé du Penhoat MA, Ricoul M, Boissière A, Touati A, Abel F, Politis MF, Fayard B, Guigner JM, Martins L, Testard I, Sabatier L, Chetioui A. Chromosome aberrations and cell inactivation induced in mammalian cells by ultrasoft X‐rays: correlation with the core ionizations in DNA. Int J Radiat Biol 2009; 80:135-45. [PMID: 15164795 DOI: 10.1080/09553000310001654710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To study the frequency of chromosome aberrations induced by soft X-rays. To see if the core ionization of DNA atoms is involved in this end-point as much as it appears to be in cell killing. MATERIALS AND METHODS V79 hamster cells were irradiated by synchrotron radiation photons iso-attenuated in the cell (250, 350, 810eV). The morphological chromosome aberrations detected in the first post-irradiation cell division (dicentrics and centric rings) were studied by Giemsa staining. RESULTS The chromosome aberrations at 350eV were, respectively, 2.6 +/- 0.8 and 2.1 +/- 0.8 times more numerous than at 250 and 810eV for the same average dose absorbed by the nucleus. These relative effectivenesses are comparable with the ones already measured for cell killing. Moreover, they roughly vary such as the relative numbers of core ionizations (including in the phosphorus L-shell) produced in DNA and its bound water (water being involved only at 810eV through the oxygen atoms). In particular, they reproduce the characteristic twofold enhancement at 350eV, above the carbon K threshold. CONCLUSIONS Correlations suggest that the core ionization process is likely a common and essential mechanism initiating both chromosome aberration and cell killing end-points at these photon energies.
Collapse
Affiliation(s)
- F N Gobert
- Groupe de Physique des Solides, Université Paris 6 et Paris 7, T23, 2 place Jussieu, F-75 251 Paris Cedcx 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sasaki MS. Advances in the biophysical and molecular bases of radiation cytogenetics. Int J Radiat Biol 2009; 85:26-47. [PMID: 19205983 DOI: 10.1080/09553000802641185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE For more than 70 years radiation cytogenetics has continued to be a topic of major concern in relation to the action of radiation on living cells. To date, diverse cytogenetic findings have developed into orderly, quantitative interpretations and have stimulated numerous biophysical models. However, it is generally agreed that any one of the models used alone is still unable to explain all aspects of the observed chromosomal effects. In this review, a large number of radiation-induced chromosome aberration findings from the literature are reassessed with special attention given to the reaction kinetics and the relevant molecular processes. CONCLUSION It is now clear that DNA double-strand breaks (DSB) are an integral component of radiation-induced chromosome aberration. At the nexus of the maintenance of genome integrity, cells are equipped with excellent systems to repair DSB, notably non-homologous end-joining (NHEJ) and homologous recombination repair (HRR). These repair mechanisms are strictly regulated along with the DNA turnover cycle. NHEJ functions in all phases of the cell cycle, whereas HRR has a supplementary role specifically in S/G2 phase, where homologous DNA sequences are available in close proximity. The repair pathways are further regulated by a complex nuclear dynamism, where DSB are sensed and large numbers of repair proteins are recruited and assembled to form a repair complex involving multiple DSB. Considering such DSB repair dynamism, radiation-induced chromosome aberrations could be well understood as DSB-DSB pairwise interactions associated with the NHEJ pathway in all phases of the cell cycle and misrepair of a single DSB associated with the complementary HRR pathway in late S/G2 phase.
Collapse
Affiliation(s)
- M S Sasaki
- Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
45
|
Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc Natl Acad Sci U S A 2009; 106:3172-7. [PMID: 19221031 DOI: 10.1073/pnas.0810987106] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We studied the spatiotemporal organization of DNA damage processing by live cell microscopy analysis in human cells. In unirradiated U2OS osteosarcoma and HeLa cancer cells, a fast confined and Brownian-like motion of DNA repair protein foci was observed, which was not altered by radiation. By analyzing the motional activity of GFP-53BP1 foci in live cells up to 12-h after irradiation, we detected an additional slower mobility of damaged chromatin sites showing a mean square displacement of approximately 0.6 microm(2)/h after exposure to densely- or sparsely-ionizing radiation, most likely driven by normal diffusion of chromatin. Only occasionally, larger translational motion connected to morphological changes of the whole nucleus could be observed. In addition, there was no general tendency to form repair clusters in the irradiated cells. We conclude that long-range displacements of damaged chromatin domains do not generally occur during DNA double-strand break repair after introduction of multiple damaged sites by charged particles. The occasional and in part transient appearance of cluster formation of radiation-induced foci may represent a higher mobility of chromatin along the ion trajectory. These observations support the hypothesis that spatial proximity of DNA breaks is required for the formation of radiation-induced chromosomal exchanges.
Collapse
|
46
|
Salaverria I, Espinet B, Carrió A, Costa D, Astier L, Slotta-Huspenina J, Quintanilla-Martinez L, Fend F, Solé F, Colomer D, Serrano S, Miró R, Beà S, Campo E. Multiple recurrent chromosomal breakpoints in mantle cell lymphoma revealed by a combination of molecular cytogenetic techniques. Genes Chromosomes Cancer 2008; 47:1086-97. [PMID: 18709664 DOI: 10.1002/gcc.20609] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mantle cell lymphoma (MCL) is genetically characterized by 11q13 translocations leading to the overexpression of CCND1, and additional secondary genomic alterations that may be important in the progression of this disease. We have analyzed 22 MCL cases and 10 MCL cell lines using multicolor fluorescence in situ hybridization (M-FISH), FISH, and comparative genomic hybridization (CGH). The 19 cases with abnormal karyotype showed the t(11;14)(q13;q32) translocation and, additionally, 89% of cases showed both numerical (n = 58) and structural (n = 77) aberrations. All but one MCL cell line showed t(11;14) and structural and numerical alterations in highly complex karyotypes. Besides 11 and 14, the most commonly rearranged chromosomes were 1, 8, and 10 in the tumors and 1, 8, and 9 in the cell lines. No recurrent translocations other than the t(11;14) were identified. However, we identified 17 recurrent breakpoints, the most frequent being 1p22 and 8p11, each observed in four cases and two cell lines. Interestingly, five tumors and four cell lines displayed a complex t(11;14), cryptic in one case and two cell lines, preferentially involving chromosome 8. In typical MCL, ATM gene deletions were significantly associated with a high number of structural and numerical alterations. In conclusion, MCL does not have recurrent translocations other than t(11;14), but shows recurrent chromosomal breakpoints. Furthermore, most MCL harbor complex karyotypes with a high number of both structural and numerical alterations affecting several common breakpoints, leading to various balanced and unbalanced translocations.
Collapse
Affiliation(s)
- Itziar Salaverria
- Department of Pathology, Hematopathology Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jiang J, Belikova NA, Hoye AT, Zhao Q, Epperly MW, Greenberger JS, Wipf P, Kagan VE. A mitochondria-targeted nitroxide/hemigramicidin S conjugate protects mouse embryonic cells against gamma irradiation. Int J Radiat Oncol Biol Phys 2008; 70:816-25. [PMID: 18262096 DOI: 10.1016/j.ijrobp.2007.10.047] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 10/24/2007] [Accepted: 10/24/2007] [Indexed: 01/07/2023]
Abstract
PURPOSE To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in gamma-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. METHODS AND MATERIALS Cells were incubated with 5-125 before (10 minutes) or after (1 hour) gamma-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cell surface. Cell survival was measured by means of a clonogenic assay. RESULTS Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 mum) effectively suppressed gamma-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of gamma-irradiated cells. In addition, 5-125 enhanced and prolonged gamma-irradiation-induced G(2)/M phase arrest. CONCLUSIONS Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G(2)/M phase, may contribute to the protection.
Collapse
Affiliation(s)
- Jianfei Jiang
- Center for Medical Countermeasures Against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Carlson DJ, Stewart RD, Semenenko VA, Sandison GA. Combined Use of Monte Carlo DNA Damage Simulations and Deterministic Repair Models to Examine Putative Mechanisms of Cell Killing. Radiat Res 2008; 169:447-59. [DOI: 10.1667/rr1046.1] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 12/19/2007] [Indexed: 11/03/2022]
|
49
|
Sakata KI, Someya M, Matsumoto Y, Hareyama M. Ability to repair DNA double-strand breaks related to cancer susceptibility and radiosensitivity. ACTA ACUST UNITED AC 2007; 25:433-8. [DOI: 10.1007/s11604-007-0161-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 06/05/2007] [Indexed: 11/25/2022]
|
50
|
Falk M, Lukasova E, Gabrielova B, Ondrej V, Kozubek S. Chromatin dynamics during DSB repair. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1534-45. [PMID: 17850903 DOI: 10.1016/j.bbamcr.2007.07.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 07/04/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
We show that double strand breaks (DSBs) induced in chromatin of low as well as high density by exposure of human cells to gamma-rays are repaired in low-density chromatin. Extensive chromatin decondensation manifested in the vicinity of DSBs by decreased intensity of chromatin labelling, increased H4K5 acetylation, and decreased H3K9 dimethylation was observed already 15 min after irradiation. Only slight movement of sporadic DSB loci for short distances was noticed in living cells associated with chromatin decondensation around DSBs. This frequently resulted in their protrusion into the low-density chromatin domains. In these regions, the clustering (contact or fusion) of DSB foci was seen in vivo, and in situ after cell fixation. The majority of these clustered foci were repaired within 240 min, but some of them persisted in the nucleus for several days after irradiation, indicating damage that is not easily repaired. We propose that the repair of DSB in clustered foci might lead to misjoining of ends and, consequently, to exchange aberrations. On the other hand, the foci that persist for several days without being repaired could lead instead to cell death.
Collapse
Affiliation(s)
- Martin Falk
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | | | | | | | | |
Collapse
|