1
|
Páez DFC, Villalba XG, Zabalo NA, Galceran HT, Güell IJ, Noguera XG. Mass transfer vectors for nitric oxide removal through biological treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110089-110103. [PMID: 37783992 PMCID: PMC10625516 DOI: 10.1007/s11356-023-30009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
The reduction of nitric oxide (NO) emissions to atmosphere has been recently addressed using biological technologies. However, NO removal through bioprocesses is quite challenging due to the low solubility of NO in water. Therefore, the abatement of NO emissions might be improved by adding a chelating agent or a mass transfer vector (MTV) to increase the solubility of this pollutant into the aqueous phase where the bioprocess takes place. This research seeks to assess the performance of different non-aqueous phase liquids (NAPs): n-hexadecane (HEX), diethyl sebacate (DSE), 1,1,1,3,5,5,5-heptamethyl-trisiloxane (HTX), 2,2,4,4,6,8,8-heptamethylnonane (HNO), and high temperature silicone oil (SO) in chemical absorption-biological reduction (CABR) integrated systems. The results showed that HNO and HTX had the maximum gas-liquid mass transfer capacity, being 0.32 mol NO/kmol NAP and 0.29 mol NO/kmol NAP, respectively. When an aqueous phase was added to the system, the mass transfer gas-liquid of NO was increased, with HTX reaching a removal efficiency of 82 ± 3% NO with water, and 88 ± 6% with a phosphate buffer solution. All NAPs were tested for short-term toxicity assessment and resulted neither toxic nor inhibitory for the biological activity (denitrification). DSE was found to be biodegradable, which could limit its applicability in biological processes for gas treatment. Finally, in the CABR system tests, it was shown that NO elimination improved in a short time (30 min) when the three mass transfer vectors (HEX, HTX, HNO) were added to enriched denitrifying bacteria.
Collapse
Affiliation(s)
- David Fernando Cubides Páez
- Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, 08243, Manresa, Spain
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242, Manresa, Spain
| | - Xavier Guimerà Villalba
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242, Manresa, Spain.
| | - Nerea Abasolo Zabalo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204, Reus, Spain
| | - Helena Torrell Galceran
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204, Reus, Spain
| | - Irene Jubany Güell
- Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, 08243, Manresa, Spain
| | - Xavier Gamisans Noguera
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242, Manresa, Spain
| |
Collapse
|
2
|
Liu N, Li YY, Ouyang DJ, Zou CY, Li W, Zhao JH, Li JX, Wang WJ, Hu JJ. Performance and Microbial Community Analysis of an Electrobiofilm Reactor Enhanced by Ferrous-EDTA. ACS OMEGA 2021; 6:17766-17775. [PMID: 34308012 PMCID: PMC8296010 DOI: 10.1021/acsomega.0c05876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The biological reduction of ferrous ethylenediaminetetraacetic acid (EDTA-FeII-NO and EDTA-FeIII) is an important process in the integrated electrobiofilm reduction method, and it has been regarded as a promising alternative method for removing NO x from industrial boiler flue gas. EDTA-FeII-NO and EDTA-FeIII are crucial substrates that should be biologically reduced at a high rate. However, they inhibit the reduction processes of one another when these two substrates are presented together, which might limit further promotion of the integrated method. In this study, an integrated electrobiofilm reduction system with high reduction rates of EDTA-FeII-NO and EDTA-FeIII was developed. The dynamic changes of microbial communities in the electrobiofilms were mainly investigated to analyze the changes during the reduction of these two substrates under different conditions. The results showed that compared to the conventional chemical absorption-biological reduction system, the reduction system exhibited better performance in terms of resistance to substrate shock loading and high microbial diversities. High-throughput sequencing analysis showed that Alicycliphilus, Enterobacteriaceae, and Raoultella were the dominant genera (>25% each) during the process of EDTA-FeII-NO reduction. Chryseobacterium had the ability to endure the shock loading of EDTA-FeIII, and the relative abundance of Chryseobacterium under abnormal operation conditions was up to 30.82%. Ochrobactrum was the main bacteria for reducing nitrate by electrons and the relative abundance still exhibited 16.11% under shock loading. Furthermore, higher microbial diversity and stable reactor operation were achieved when the concentrations of EDTA-FeII-NO and EDTA-FeIII approached the same value (9 mmol·L-1).
Collapse
Affiliation(s)
- Nan Liu
- Key
Laboratory of Pollution Treatment and Resource, China National Light
Industry; Collaborative Innovation Center of Environmental Pollution
Control and Ecological Restoration, Department of Material and Chemical
Engineering, Zhengzhou University of Light
Industry, Zhengzhou 450001, Henan, P. R. China
| | - Ying-ying Li
- Key
Laboratory of Pollution Treatment and Resource, China National Light
Industry; Collaborative Innovation Center of Environmental Pollution
Control and Ecological Restoration, Department of Material and Chemical
Engineering, Zhengzhou University of Light
Industry, Zhengzhou 450001, Henan, P. R. China
| | - Du-juan Ouyang
- Key
Laboratory of Pollution Treatment and Resource, China National Light
Industry; Collaborative Innovation Center of Environmental Pollution
Control and Ecological Restoration, Department of Material and Chemical
Engineering, Zhengzhou University of Light
Industry, Zhengzhou 450001, Henan, P. R. China
| | - Chang-yong Zou
- Key
Laboratory of Pollution Treatment and Resource, China National Light
Industry; Collaborative Innovation Center of Environmental Pollution
Control and Ecological Restoration, Department of Material and Chemical
Engineering, Zhengzhou University of Light
Industry, Zhengzhou 450001, Henan, P. R. China
| | - Wei Li
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
Institute of Industrial Ecology and Environment, College of Chemical
and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou 310027, P. R. China
| | - Ji-hong Zhao
- Henan
Radio & Television University, Zhengzhou 450001, P. R.
China
| | - Ji-xiang Li
- Shanghai
Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Wen-juan Wang
- Shanghai
Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, P. R. China
| | - Ja-jun Hu
- Shanghai
Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
3
|
Guo T, Zhang C, Zhao J, Ma C, Li S, Li W. Evaluation of polypyrrole-modified bioelectrodes in a chemical absorption-bioelectrochemical reduction integrated system for NO removal. Sci Rep 2019; 9:13030. [PMID: 31506560 PMCID: PMC6737099 DOI: 10.1038/s41598-019-49610-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/28/2019] [Indexed: 11/09/2022] Open
Abstract
A Chemical absorption-bioelectrochemical reduction (CABER) system is based on Chemical absorption-biological reduction (CABR) system, which aims at NO removal and has been studied in many of our previous works. In this paper, we applied polypyrrole (PPy) on the electrode of bioelectrochemical reactor (BER) of CABER system, which induced a much higher current density in the cyclic voltammetry (CV) curve for the electrode itself and better NO removal rate in the system. In addition, a Microbial Electrolysis Cell (MEC) is constructed to study its strengthening mechanism. Results shows that PPy-MEC has a greater Faraday efficiency and higher reduction rate of Fe(III)EDTA and Fe(II)EDTA-NO in the solution when compared to original Carbon MEC, which confirms the advantage of PPy-modified electrode(s) in the CABER system. The results of this study are reported for illustration of potential of CABER technology and design of low-cost high-efficiency NOx control equipment in the future.
Collapse
Affiliation(s)
- Tianjiao Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Chunyan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Jingkai Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Cunhao Ma
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China.
| |
Collapse
|
4
|
Augustyniak AW, Suchecki TT, Kumazawa H. Reactivity of nano-size zinc powder in the aqueous solution of [Fe III(edta)(H 2O)] . ENVIRONMENTAL TECHNOLOGY 2017; 38:103-107. [PMID: 27227652 DOI: 10.1080/09593330.2016.1186745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Nitrogen mono-oxide and sulfur dioxide can be removed by simultaneous absorption into aqueous mixed solutions of sulfite and [FeII(edta)]H2O)]2-, ferrous ion coordinated to an anion of ethylene-diaminetetraacetic acid (EDTA or edta). In the industrial system with coexisting oxygen in the gas phase, [FeII(edta)](H2O)]2- complex is oxidized to [FeIII(edta)](H2O)]- by molecular oxygen. Because the ferric complex has no capability for reaction with NO, the suppression of this undesired oxidation process is a very important technological problem to be overcome. In our preceding work, we discussed the reduction kinetics of ferric ion by metal powder on the basis of the kinetic data regarding the ferric ion reduction in aqueous solutions of [FeIII(edta)](H2O)]- containing aluminum, tin or zinc powders. Zinc powder of normal size was recognized as an effective reducing agent. In the present work, augmentation of reducing capability of zinc powder was examined more. The rate of reduction of nano-size zinc powder was found to be about 11 times higher than that of normal-size zinc one.
Collapse
Affiliation(s)
| | - Tomasz T Suchecki
- b Faculty of Environmental Engineering , Wroclaw University of Technology , Wrocław , Poland
| | | |
Collapse
|
5
|
Li W, Zhao J, Zhang L, Xia Y, Liu N, Li S, Zhang S. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process. Sci Rep 2016; 6:18876. [PMID: 26743930 PMCID: PMC4705534 DOI: 10.1038/srep18876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/30/2015] [Indexed: 11/09/2022] Open
Abstract
A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China.,Institute of Environmental Engineering, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Jingkai Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Lei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China.,Zhejiang Industrial Environmental Protection Design &Research Institute Co., Ltd., Hangzhou, 310035, China
| | - Yinfeng Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China.,Institute of Environmental Engineering, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Nan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Shihan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| |
Collapse
|
6
|
|
7
|
Khannous L, Jrad M, Dammak M, Miladi R, Chaaben N, Khemakhem B, Gharsallah N, Fendri I. Isolation of a novel amylase and lipase-producing Pseudomonas luteola strain: study of amylase production conditions. Lipids Health Dis 2014; 13:9. [PMID: 24405763 PMCID: PMC3895763 DOI: 10.1186/1476-511x-13-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/28/2013] [Indexed: 11/10/2022] Open
Abstract
An amylase and lipase producing bacterium (strain C2) was enriched and isolated from soil regularly contaminated with olive washing wastewater in Sfax, Tunisia. Cell was aerobic, mesophilic, Gram-negative, motile, non-sporulating bacterium, capable of growing optimally at pH 7 and 30°C and tolerated maximally 10% (W/V) NaCl. The predominant fatty acids were found to be C18:1ω7c (32.8%), C16:1ω7c (27.3%) and C16:0 (23.1%). Phylogenetic analysis of the 16S rRNA gene revealed that this strain belonging to the genus Pseudomonas. Strain C2 was found to be closely related to Pseudomonas luteola with more than 99% of similarity. Amylase optimization extraction was carried out using Box Behnken Design (BBD). Its maximal activity was found when the pH and temperature ranged from 5.5 to 6.5 and from 33 to 37°C, respectively. Under these conditions, amylase activity was found to be about 9.48 U/ml.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Imen Fendri
- Faculté des Sciences de Sfax, Unité de recherche Toxicologie- Microbiologie Environnementale et Santé, Université de, Sfax, Tunisia.
| |
Collapse
|