1
|
Ochoa-Hernández ME, Reynoso-Varela A, Martínez-Córdova LR, Rodelas B, Durán U, Alcántara-Hernández RJ, Serrano-Palacios D, Calderón K. Linking the shifts in the metabolically active microbiota in a UASB and hybrid anaerobic-aerobic bioreactor for swine wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118435. [PMID: 37379625 DOI: 10.1016/j.jenvman.2023.118435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Due to the high concentration of pollutants, swine wastewater needs to be treated prior to disposal. The combination of anaerobic and aerobic technologies in one hybrid system allows to obtain higher removal efficiencies compared to those achieved via conventional biological treatment, and the performance of a hybrid system depends on the microbial community in the bioreactor. Here, we evaluated the community assembly of an anaerobic-aerobic hybrid reactor for swine wastewater treatment. Sequencing of partial 16S rRNA coding genes was performed using Illumina from DNA and retrotranscribed RNA templates (cDNA) extracted from samples from both sections of the hybrid system and from a UASB bioreactor fed with the same swine wastewater influent. Proteobacteria and Firmicutes were the dominant phyla and play a key role in anaerobic fermentation, followed by Methanosaeta and Methanobacterium. Several differences were found in the relative abundances of some genera between the DNA and cDNA samples, indicating an increase in the diversity of the metabolically active community, highlighting Chlorobaculum, Cladimonas, Turicibacter and Clostridium senso stricto. Nitrifying bacteria were more abundant in the hybrid bioreactor. Beta diversity analysis revealed that the microbial community structure significantly differed among the samples (p < 0.05) and between both anaerobic treatments. The main predicted metabolic pathways were the biosynthesis of amino acids and the formation of antibiotics. Also, the metabolism of C5-branched dibasic acid, Vit B5 and CoA, exhibited an important relationship with the main nitrogen-removing microorganisms. The anaerobic-aerobic hybrid bioreactor showed a higher ammonia removal rate compared to the conventional UASB system. However, further research and adjustments are needed to completely remove nitrogen from wastewater.
Collapse
Affiliation(s)
- María E Ochoa-Hernández
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Andrea Reynoso-Varela
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur., Ciudad Obregón, Sonora, CP.85000, Mexico
| | - Luis R Martínez-Córdova
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Belén Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Spain
| | - Ulises Durán
- Universidad Autónoma Metropolitana, Biotechnology Dept., P.A. 55-535, 09340, Iztapalapa, Mexico City, Mexico
| | - Rocío J Alcántara-Hernández
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, Mexico
| | - Denisse Serrano-Palacios
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur., Ciudad Obregón, Sonora, CP.85000, Mexico.
| | - Kadiya Calderón
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
2
|
Samuchiwal S, Naaz F, Kumar P, Ahammad SZ, Malik A. Life cycle assessment of sequential microbial-based anaerobic-aerobic reactor technology developed onsite for treating textile effluent. ENVIRONMENTAL RESEARCH 2023; 234:116545. [PMID: 37429404 DOI: 10.1016/j.envres.2023.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Although biological treatment of textile effluent is a preferred option for industries avoiding toxic chemical sludge production and disposal, requirement of several extra pre-treatment units like neutralization, cooling systems or additives, results in higher operational cost. In the present study, a pilot scale sequential microbial-based anaerobic-aerobic reactor technology (SMAART) was developed and operated for the treatment of real textile effluent in the industrial premises in continuous mode for 180 d. The results showed an average ∼95% decolourization along with ∼92% reduction in the chemical oxygen demand establishing the resilience against fluctuations in the inlet parameters and climate conditions. Moreover, the pH of treated effluent was also reduced from alkaline range (∼11.05) to neutral range (∼7.76) along with turbidity reduction from ∼44.16 NTU to ∼0.14 NTU. A comparative life cycle assessment (LCA) of SMAART with the conventional activated sludge process (ASP) showed that ASP caused 41.5% more negative impacts on environment than SMAART. Besides, ASP had 46.15% more negative impact on human health, followed by 42.85% more negative impact on ecosystem quality as compared to SMAART. This was attributed to less electricity consumption, absence of pre-treatment units (cooling and neutralization) and less volume of sludge generation (∼50%) while using SMAART. Hence, integration of SMAART within the industrial effluent treatment plant is recommended to achieve a minimum waste discharge system in pursuit of sustainability.
Collapse
Affiliation(s)
- Saurabh Samuchiwal
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, Delhi, 110016, India.
| | - Farah Naaz
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, Delhi, 110016, India.
| | - Pushpender Kumar
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, Delhi, 110016, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology, Hauz Khas, Delhi, 110016, India.
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, Delhi, 110016, India.
| |
Collapse
|
3
|
The Evaluation of Simultaneous COD and Sulfate Removal at High COD/SO42− Ratio and Haloalkaline Condition. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Cabral CS, Sanson AL, Afonso RJCF, Chernicharo CAL, Araújo JC. Impact of microaeration bioreactor on dissolved sulfide and methane removal from real UASB effluent for sewage treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1951-1960. [PMID: 32666948 DOI: 10.2166/wst.2020.250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two bioreactors were investigated as an alternative for the post-treatment of effluent from an upflow anaerobic sludge blanket (UASB) reactor treating domestic sewage, aiming at dissolved sulfide and methane removal. The bioreactors (R-control and R-air) were operated at different hydraulic retention times (HRT; 6 and 3 h) with or without aeration. Large sulfide and methane removal efficiencies were achieved by the microaerated reactor at HRT of 6 h. At this HRT, sulfide removal efficiencies were equal to 61% and 79%, and methane removal efficiencies were 31% and 55% for R-control and R-air, respectively. At an HRT of 3 h, sulfide removal efficiencies were 22% (R-control) and 33% (R-air) and methane removal did not occur. The complete oxidation of sulfide, with sulfate formation, prevailed in both phases and bioreactors. However, elemental sulfur formation was more predominant at an HRT of 6 h than at an HRT of 3 h. Taken together, the results show that post-treatment improved the anaerobic effluent quality in terms of chemical oxygen demand and solids removal. However, ammoniacal nitrogen was not removed due to either the low concentration of air provided or the absence of microorganisms involved in the nitrogen cycle.
Collapse
Affiliation(s)
- C S Cabral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6.627, Campus Pampulha, Belo Horizonte, MG 31270-901, Brazil E-mail:
| | - A L Sanson
- Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brazil
| | - R J C F Afonso
- Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brazil
| | - C A L Chernicharo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6.627, Campus Pampulha, Belo Horizonte, MG 31270-901, Brazil E-mail:
| | - J C Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6.627, Campus Pampulha, Belo Horizonte, MG 31270-901, Brazil E-mail:
| |
Collapse
|
5
|
Lin S, Mackey HR, Hao T, Guo G, van Loosdrecht MCM, Chen G. Biological sulfur oxidation in wastewater treatment: A review of emerging opportunities. WATER RESEARCH 2018; 143:399-415. [PMID: 29986249 DOI: 10.1016/j.watres.2018.06.051] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Sulfide prevails in both industrial and municipal waste streams and is one of the most troublesome issues with waste handling. Various technologies and strategies have been developed and used to deal with sulfide for decades, among which biological means make up a considerable portion due to their low operation requirements and flexibility. Sulfur bacteria play a vital role in these biotechnologies. In this article, conventional biological approaches dealing with sulfide and functional microorganisms are systematically reviewed. Linking the sulfur cycle with other nutrient cycles such as nitrogen or phosphorous, and with continued focus of waste remediation by sulfur bacteria, has led to emerging biotechnologies. Furthermore, opportunities for energy harvest and resource recovery based on sulfur bacteria are also discussed. The electroactivity of sulfur bacteria indicates a broad perspective of sulfur-based bioelectrochemical systems in terms of bioelectricity production and bioelectrochemical synthesis. The considerable PHA accumulation, high yield and anoxygenic growth conditions in certain phototrophic sulfur bacteria could provide an interesting alternative for bioplastic production. In this review, new merits of biological sulfide oxidation from a traditional environmental management perspective as well as a waste to resource perspective are presented along with their potential applications.
Collapse
Affiliation(s)
- Sen Lin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hamish R Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Gang Guo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China; Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Bressani-Ribeiro T, Brandt EMF, Gutierrez KG, Díaz CA, Garcia GB, Chernicharo CAL. Potential of resource recovery in UASB/trickling filter systems treating domestic sewage in developing countries. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:1659-1666. [PMID: 28402307 DOI: 10.2166/wst.2017.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper aims to present perspectives for energy (thermal and electric) and nutrient (N and S) recovery in domestic sewage treatment systems comprised of upflow anaerobic sludge blanket (UASB) reactors followed by sponge-bed trickling filters (SBTF) in developing countries. The resource recovery potential was characterized, taking into account 114 countries and a corresponding population of 968.9 million inhabitants living in the tropical world, which were grouped into three desired ranges in terms of cities' size. For each of these clusters, a technological arrangement flow-sheet was proposed, depending on their technical and economic viability from our best experience. Considering the population living in cities over 100, 000 inhabitants, the potential of energy and nutrient recovery via the sewage treatment scheme would be sufficient to generate electricity for approximately 3.2 million residents, as well as thermal energy for drying purposes that could result in a 24% volume reduction of sludge to be transported and disposed of in landfills. The results show that UASB/SBTF systems can play a very important role in the sanitation and environmental sector towards more sustainable sewage treatment plants.
Collapse
Affiliation(s)
- T Bressani-Ribeiro
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6.627, Campus Pampulha, Belo Horizonte, MG 31270-901, Brazil E-mail:
| | - E M F Brandt
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6.627, Campus Pampulha, Belo Horizonte, MG 31270-901, Brazil E-mail: ; Department of Sanitary and Environmental Engineering, Federal University of Juiz de Fora, Engineering College, Campus UFJF, Juiz de Fora, MG 36036-330, Brazil
| | - K G Gutierrez
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6.627, Campus Pampulha, Belo Horizonte, MG 31270-901, Brazil E-mail:
| | - C A Díaz
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6.627, Campus Pampulha, Belo Horizonte, MG 31270-901, Brazil E-mail:
| | - G B Garcia
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6.627, Campus Pampulha, Belo Horizonte, MG 31270-901, Brazil E-mail:
| | - C A L Chernicharo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6.627, Campus Pampulha, Belo Horizonte, MG 31270-901, Brazil E-mail:
| |
Collapse
|
7
|
de Sousa JT, Lima JDF, da Silva VC, Leite VD, Lopes WS. Recovery of elemental sulphur from anaerobic effluents through the biological oxidation of sulphides. ENVIRONMENTAL TECHNOLOGY 2017; 38:529-537. [PMID: 27350297 DOI: 10.1080/09593330.2016.1201148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/05/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present study was to evaluate the biological oxidation of sulphide in two different UASB reactors by assessing the occurrence of oxidized forms of sulphur in the effluents and the amount of S0 that could be recovered in the process. The bioreactors employed were an anaerobic hybrid (AH) reactor employing porous polyurethane foam as support media and a micro-aerated UASB reactor equipped with an aeration device above the digestion zone. The AH reactor produced a final effluent containing low concentrations of S2- (3.87% of total sulphur load). It was achieved due to a complete oxidation of 56.1% of total sulphur. The partial biological oxidation that occurred in the AH reactor allowed the recovery of 30% of the sulphur load as S0. The effluent from the micro-aerated UASB reactor contained 5% of the sulphur load in the form of S2-, while 20.9% was present as dissolved SO42- and 46% was precipitated as S0. It is concluded that the AH reactor or micro-aeration carried out above the digestion zone of the UASB reactor favoured the biological oxidation of S2- and the release of odourless effluents. Both technologies represent feasible and low-cost alternatives for the anaerobic treatment of domestic sewage.
Collapse
Affiliation(s)
- José Tavares de Sousa
- a Departamento de Engenharia Sanitária e Ambiental, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental , Universidade Estadual da Paraiba , Campina Grande , Brazil
| | - Jéssyca de Freitas Lima
- a Departamento de Engenharia Sanitária e Ambiental, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental , Universidade Estadual da Paraiba , Campina Grande , Brazil
| | - Valquíria Cordeiro da Silva
- a Departamento de Engenharia Sanitária e Ambiental, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental , Universidade Estadual da Paraiba , Campina Grande , Brazil
| | - Valderi Duarte Leite
- a Departamento de Engenharia Sanitária e Ambiental, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental , Universidade Estadual da Paraiba , Campina Grande , Brazil
| | - Wilton Silva Lopes
- a Departamento de Engenharia Sanitária e Ambiental, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental , Universidade Estadual da Paraiba , Campina Grande , Brazil
| |
Collapse
|
8
|
Frigaard NU. Biotechnology of Anoxygenic Phototrophic Bacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:139-154. [DOI: 10.1007/10_2015_5006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|