1
|
Lu Q, Li H, Liu H, Xu Z, Saikaly PE, Zhang W. A fast microbial nitrogen-assimilation technology enhances nitrogen migration and single-cell-protein production in high-ammonia piggery wastewater. ENVIRONMENTAL RESEARCH 2024; 257:119329. [PMID: 38851372 DOI: 10.1016/j.envres.2024.119329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Conventional methods, such as freshwater dilution and ammonia stripping, have been widely employed for microalgae-based piggery wastewater (PW) treatment, but they cause high freshwater consumption and intensive ammonia loss, respectively. This present work developed a novel fast microbial nitrogen-assimilation technology by integrating nitrogen starvation, zeolite-based adsorption, pH control, and co-culture of microalgae-yeast for the PW treatment. Among them, the nitrogen starvation accelerated the nitrogen removal and shortened the treatment period, but it could not improve the tolerance level of microalgal cells to ammonia toxicity based on oxidative stress. Therefore, zeolite was added to reduce the initial total ammonia-nitrogen concentration to around 300 mg/L by ammonia adsorption. Slowly releasing ammonia at the later phase maintained the total ammonia-nitrogen concentration in the PW. However, the pH increase could cause lots of ammonia loss air and pollution and inhibit the desorption of ammonia from zeolite and the growth and metabolism of microalgae during the microalgae cultivation. Thus, the highest biomass yield (3.25 g/L) and nitrogen recovery ratio (40.31%) were achieved when the pH of PW was controlled at 6.0. After combining the co-cultivation of microalgae-yeast, the carbon-nitrogen co-assimilation and the alleviation of pH fluctuation further enhanced the nutrient removal and nitrogen migration to high-protein biomass. Consequently, the fast microbial nitrogen-assimilation technology can help update the industrial system for high-ammonia wastewater treatment by improving the treatment and nitrogen recovery rates.
Collapse
Affiliation(s)
- Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Huankai Li
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenxiang Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
2
|
Song H, Li J, Su Q, Li H, Guo X, Shao S, Fan L, Xu P, Zhou W, Qian J. Insight into the mechanism of nitrogen sufficiency conversion strategy for microalgae-based ammonium-rich wastewater treatment. CHEMOSPHERE 2024; 349:140904. [PMID: 38070604 DOI: 10.1016/j.chemosphere.2023.140904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
The strategy of nitrogen sufficiency conversion can improve ammonium nitrogen (NH4+-N) removal with microalgal cells from ammonium-rich wastewater. We selected and identified one promising isolated algal strain, NCU-7, Chlorella sorokiniana, which showed a high algal yield and tolerance to ammonium in wastewater, as well as strong adaptability to N deprivation. The transition from N deprivation through mixotrophy (DN, M) to N sufficiency through autotrophy (SN, P) achieved the highest algal yields (optical density = 1.18 and 1.59) and NH4+-N removal rates (2.5 and 4.2 mg L-1 d-1) from synthetic wastewaters at two NH4+-N concentrations (160 and 320 mg L-1, respectively). Algal cells in DN, M culture obtained the lowest protein content (20.6%) but the highest lipid content (34.0%) among all cultures at the end of the stage 2. After transferring to stage 3, the lowest protein content gradually recovered to almost the same level as SN, P culture on the final day. Transmission electron microscopy and proteomics analysis demonstrated that algal cells had reduced intracellular protein content but accumulated lipids under N deprivation by regulating the reduction in synthesis of protein, carbohydrate, and chloroplast, while enhancing lipid synthesis. After transferring to N sufficiency, algal cells accelerated their growth by recovering protein synthesis, leading to excessive uptake of NH4+-N from wastewater. This study provides specific insights into a nitrogen sufficiency conversion strategy to enhance algal growth and NH4+-N removal/uptake during microalgae-based ammonium-rich wastewater treatment.
Collapse
Affiliation(s)
- Hanwu Song
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Qihui Su
- Xinjiang Rao River Hydrological and Water Resources Monitoring Center, Shangrao, 334000, China
| | - Hongwu Li
- Faculty of Science and Engineering, Soka University, Tokyo, 1928577, Japan
| | - Xujie Guo
- Nanchang Environmental Science Research Institute Co., Ltd, Nanchang, 330031, China
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Liangliang Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Peilun Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Enhancement of ammonium removal from landfill leachate using microalgae by an integrated strategy of nutrient balance and trophic mode conversion. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Pang H, Wang YN, Chi ZY, Xu YP, Li SY, Che J, Wang JH. Enhanced aquaculture effluent polishing by once and repetitive nutrients deprived seawater Chlorella sp. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Song Y, Wang X, Cui H, Ji C, Xue J, Jia X, Ma R, Li R. Enhancing growth and oil accumulation of a palmitoleic acid-rich Scenedesmus obliquus in mixotrophic cultivation with acetate and its potential for ammonium-containing wastewater purification and biodiesel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113273. [PMID: 34311253 DOI: 10.1016/j.jenvman.2021.113273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
A palmitoleic acid-rich Scenedesmus obliquus strain SXND-02 was isolated from ammonium-containing wastewater. Biomass and lipid production were examined for this microalgal strain in photoautotrophic, heterotrophic, and mixotrophic cultivations, respectively, in order to extend its application in wastewater purification coupled with production of valued bio-products. Among the tested conditions, the microalga had better growth and higher lipid accumulation in mixotrophy. NH4Cl inhibited the microalgal growth in photoautotrophic cultivation. However, NaAc alleviated this inhibition in both heterotrophy and mixotrophy. Using 7 g L-1 NaAc and 0.5 g L-1 NH4Cl as carbon and nitrogen sources significantly increased the algal biomass and lipid yields under mixotrophic cultivation, with the highest levels up to 1.0 g L-1 and 59.88%, respectively. Fatty acid profiling indicated that palmitoleic acid was 23% in the S. obliquus SXND-02 under mixotrophic condition, which was about 21-fold higher than that in the control S. obliquus. Furthermore, this microalgal strain was tested in the chicken farm wastewater (CFW) containing high ammonium. Compared with other treatments, the S. obliquus SXND-02 cultivated in the 1/2 CFW + NaAc medium produced larger amounts of biomass (2.18 g L-1) and lipids (50.22%), and simultaneously higher removal rates of total nitrogen (TN) (80%), total ammonium nitrogen (TAN) (68%), total phosphate (TP) (82%), biological oxygen demand (BOD) (86%) and chemical oxygen demand (COD) (89%) from wastewater. The present data indicate that this excellent microalga can be used in mixotrophic cultivation for wastewater purification coupled with commercial production of valued biomass and high-quality algal oils.
Collapse
Affiliation(s)
- Yanan Song
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaodan Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoyun Jia
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China.
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, China.
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
6
|
Wang Q, Yu Z, Wei D. High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater. BIORESOURCE TECHNOLOGY 2020; 313:123499. [PMID: 32554150 DOI: 10.1016/j.biortech.2020.123499] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
To achieve a high consumption rate of ammonium with biomass coproduction, the mixotroph Chlorella pyrenoidosa was cultivated in high ammonium-high salinity wastewater medium in this study. The initial cell density, glucose and ammonium concentrations, and light intensity were optimized in shake flasks. A 5-L fermenter with surrounding LED (Light Emitting Diode) and a 50-L fermenter with inlet LED were employed for batch and semicontinuous cultivation. The results demonstrated that the highest contents of protein (56.7% DW) and total pigments (4.48% DW) with productivities of 5.62 g L-1 d-1 and 0.55 mg L-1 d-1, respectively, were obtained in 5-L photofermenter, while the maximum NH4+ consumption rate (1,800 mg L-1 d-1) and biomass yield (23.6 g L-1) were achieved in 50-L photofermenter. This study developed a novel strategy to convert high ammonium in wastewater to high-protein algal biomass, facilitating wastewater bioremediation and nitrogen recycling utilization by the mixotroph C. pyrenoidosa in photofermentation.
Collapse
Affiliation(s)
- Qingke Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zongyi Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
7
|
Liu X, Wang K, Wang J, Zuo J, Peng F, Wu J, San E. Carbon dioxide fixation coupled with ammonium uptake by immobilized Scenedesmus obliquus and its potential for protein production. BIORESOURCE TECHNOLOGY 2019; 289:121685. [PMID: 31323715 DOI: 10.1016/j.biortech.2019.121685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
In this study, immobilized Scenedesmus obliquus (S. obliquus) was proposed to simultaneously alleviate the carbon dioxide (CO2) and ammonium (NH4+-N). Two trophic modes of autotrophy and mixotrophy were conducted by batch experiments with a period of 5 days. The results shown that NH4+-N could be removed more efficiently if algal cells were immobilized, and the trophic mode change had no significant effect on immobilized S. obliquus to NH4+-N removal under 5% CO2 sparging. Specifically, immobilized S. obliquus could remove NH4+-N completely at initial concentrations of 30 and 50 mg/L and reached about 80% removal rate of NH4+-N at the concentration of 70 mg/L under both trophic modes. The protein synthesis was its main removal mechanism and the dominant amino acid components including glutamic acid (Glu), cystine (Cys), arginine (Arg), methionine (Met) and lysine (Lys) were sensitive to NH4+-N assimilation.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Jingyao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Fei Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Erfu San
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
8
|
Liu L, Zhao Y, Jiang X, Wang X, Liang W. Lipid accumulation of Chlorella pyrenoidosa under mixotrophic cultivation using acetate and ammonium. BIORESOURCE TECHNOLOGY 2018; 262:342-346. [PMID: 29735319 DOI: 10.1016/j.biortech.2018.04.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Acetate and ammonium were used as organic carbon and nitrogen sources, respectively, during mixotrophic cultivation of Chlorella pyrenoidosa. Cell growth, content of neutral lipid (NL), productivity of biomass and total lipid, and fatty acid profiles were investigated. Results showed that C. pyrenoidosa could endure high concentrations of NH4+-N (100-200 mg/L) and immediately entered logarithmic growth, when the culture media contained 2.0-10.0 g/L NaAc. The 2.0-10.0 g/L NaAc in the media also resulted in the NL content of 1.87-3.05 mg/109cells, much higher than 0.5 mg/109cells of the controls. The maximum productivities of biomass and total lipid were achieved under 50 and 10 mg/L NH4+-N respectively when the 2.0 g/L NaAc was dosed. The fatty acids were mainly composed of C16:0, C16:1, C18:0, and C18:1 under the mixotrophic cultivation, with the higher saturation compared to the controls.
Collapse
Affiliation(s)
- Lijun Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing 100083, China; Beijing ENFI Environmental Protection Co., Ltd., No. 12 Fuxing Avenue Haidian District, Beijing 100038, China
| | - Yuan Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing 100083, China
| | - Xiaoxue Jiang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing 100083, China
| | - Xiaoyu Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing 100083, China
| | - Wenyan Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Qinghua East Road Haidian District, Beijing 100083, China.
| |
Collapse
|
9
|
Ahmed A, Jyothi N, Ramesh A. Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:182-188. [PMID: 28067658 DOI: 10.2166/wst.2016.507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A single step process is proposed for ammonium removal from nitrogenous industrial effluents, with a concomitant generation of algal biomass. A microalgal strain found in the effluent treatment plant of a fertilizer industry in Mumbai, India was systematically adapted to remove up to 700 ppm of ammoniacal nitrogen from industrial wastewater, which is nearly four times higher than the ammonium tolerance reported in the literature as well as other algal strains tested in our laboratory. 18S rRNA sequencing revealed the strain to be Chlorella pyrenoidosa. Effects of process parameters such as pH, temperature and light intensity on cell growth and ammonium removal by the adapted cells were studied. Optimal conditions were found to be pH of 9, temperature of 30 °C and a light intensity of 3,500 Lux for the adapted cells.
Collapse
Affiliation(s)
- Asma Ahmed
- Department of Chemical Engineering, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Jawaharnagar, Shameerpet Mandal, Hyderabad 500078, India E-mail:
| | - Nimmakayala Jyothi
- Department of Chemical Engineering, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Jawaharnagar, Shameerpet Mandal, Hyderabad 500078, India E-mail:
| | - Adithya Ramesh
- Department of Chemical Engineering, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Jawaharnagar, Shameerpet Mandal, Hyderabad 500078, India E-mail:
| |
Collapse
|