1
|
Rajabi S, Derakhshan Z, Maleky S, Nasiri A, Ahmadi B, Feilizadeh M, Mohammadpour A, Samaei MR, Hashemi M. Innovative grey water treatment using eco-friendly bio-photocatalyst AgCuFe 2O 4@chitosan in the presence of synergistic effects of persulfate activation: optimization and mechanisms. Int J Biol Macromol 2024; 286:138375. [PMID: 39647748 DOI: 10.1016/j.ijbiomac.2024.138375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
In this study, AgCuFe2O4@Chitosan bio-photocatalyst was synthesized to make the most of environmental benignity and chemical stability for advanced greywater applications. The photocatalyst was evaluated under UV irradiation by synergistic activation of persulfate. FESEM, EDS-Mapping, and BET analyses showed quasi-spherical nanoparticles with a homogeneous size distribution, homogenous elements dispersion, and 15.305 m2/g surface area. XRD analysis confirmed that Ag and Cu were effectively incorporated into the chitosan matrix, which increased its crystallinity and stability. The photocatalyst showed a good magnetic property with an Ms. value equal to 17.13 emu/g, which helped in its easy retrieval and reuse. The TGA analysis demonstrated that the bio-composite had high thermal stability up to 600 °C. The optimal treatment conditions were a pH of 3, 2 mM persulfate, and 0.8 g/L photocatalyst dosage, where COD removal efficiencies were 82.9 % and 73.7 %, for synthetic and natural greywater, correspondingly. During the degradation process, greywater followed a pseudo-first-order kinetic model, where both sulfate and hydroxyl radicals played key roles in the elimination of COD. Moreover, the bio-photocatalyst was very reusable up to more than a few runs of treatment cycles with very good performance, underpinning the possible applications in the greywater treatment process in a sustainable manner.
Collapse
Affiliation(s)
- Saeed Rajabi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Derakhshan
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sobhan Maleky
- Department of Environmental Health Engineering, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Alireza Nasiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Bahareh Ahmadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehrzad Feilizadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Amin Mohammadpour
- Research Center for Social Determinants of Health, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Mohammad Reza Samaei
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Samy M, Tang S, Zhang Y, Leung DYC. Understanding the variations in degradation pathways and generated by-products of antibiotics in modified TiO 2 and ZnO photodegradation systems: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122402. [PMID: 39243651 DOI: 10.1016/j.jenvman.2024.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
This review examines various modification techniques, including metal doping, non-metal doping, multi doping, mixed doping, and the construction of heterojunction photocatalysts, for enhancing the performance of pure TiO2 and ZnO in the photodegradation of antibiotics. The study finds that mixed and multi doping approaches are more effective in improving photodegradation performance compared to single doping. Furthermore, the selection of suitable semiconductors for constructing heterojunction photocatalysts is crucial for achieving an efficient charge carrier separation. The environmental impacts, recent research, and real application of photocatalysis process have been discussed. The review also investigates the impact of operating parameters on the degradation pathways and the generation of by-products for different antibiotics. Additionally, the toxicity of the by-products resulting from the photodegradation of antibiotics using modified ZnO and TiO2 photocatalysts is explored, revealing that these by-products may exhibit higher toxicity than the original antibiotics. Consequently, to enable the widespread implementation of photodegradation systems, researchers should focus on optimizing degradation systems to control the conversion pathways of by-products, developing innovative photoreactors, and evaluating toxicity in real wastewater matrices.
Collapse
Affiliation(s)
- Mahmoud Samy
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Shaoru Tang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yingguang Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
3
|
Su R, Zhu Y, Gao B, Li Q. Progress on mechanism and efficacy of heterogeneous photocatalysis coupled oxidant activation as an advanced oxidation process for water decontamination. WATER RESEARCH 2024; 251:121119. [PMID: 38219690 DOI: 10.1016/j.watres.2024.121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
The rising debate on the dilemma of photocatalytic water treatment technologies has driven researchers to revisit its prospects in water decontamination. Nowadays, heterogeneous photocatalysis coupled oxidant activation techniques are intensively studied due to their dual advantages of high mineralization and high oxidation efficiency in pollutant degradation. This paved a new way for the development of solar-driven oxidation technologies. Previous reviews focused on the advances in one specific coupling technique, such as photocatalytic persulfate activation and photocatalytic ozonation, but lack a consolidated understanding of the synergy between photocatalytic oxidation and oxidant activation. The synergy involves the migration of photogenerated carriers, radical reaction, and the increase in oxidation rate and mineralization. This review systematically summarizes the fundamentals of activation mechanism, advanced characterization techniques and synergistic effects of coupling techniques for water decontamination. Besides, specific cases that lead researchers astray in revealing mechanisms and assessing synergy are critically discussed. Finally, the prospects and challenges are put forward to further deepen the research on heterogeneous photocatalytic activation of oxidants. This work provides a consolidated view of the existing heterogeneous photocatalysis coupled oxidant activation techniques and inspires researchers to develop more promising solar-driven technologies for water decontamination.
Collapse
Affiliation(s)
- Ruidian Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
4
|
Kuspanov Z, Baglan B, Baimenov A, Issadykov A, Yeleuov M, Daulbayev C. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163914. [PMID: 37149164 DOI: 10.1016/j.scitotenv.2023.163914] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
The growing environmental and energy crises have prompted researchers to seek new solutions, including large-scale photocatalytic environmental remediation and the production of solar hydrogen using photocatalytic materials. To achieve this goal, scientists have developed numerous photocatalysts with high efficiency and stability. However, the large-scale application of photocatalytic systems under real-world conditions is still limited. These limitations arise at every step, including the large-scale synthesis and deposition of photocatalyst particles on a solid support, and the development of an optimal design with high mass transfer and efficient photon absorption. The purpose of this article is to provide a detailed description of the primary challenges and potential solutions encountered in scaling up photocatalytic systems for use in large-scale water and air purification and solar hydrogen production. Additionally, based on a review of current pilot developments, we draw conclusions and make comparisons regarding the main operating parameters that affect performance, as well as propose strategies for future research.
Collapse
Affiliation(s)
- Zhengisbek Kuspanov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation
| | - Bakbolat Baglan
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Alzhan Baimenov
- Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Aidos Issadykov
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Mukhtar Yeleuov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan
| | - Chingis Daulbayev
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| |
Collapse
|
5
|
Sun Y, O'Connell DW. Application of visible light active photocatalysis for water contaminants: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10781. [PMID: 36195318 PMCID: PMC9828070 DOI: 10.1002/wer.10781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Organic water pollutants are ubiquitous in the natural environment arising from domestic products as well as current and legacy industrial processes. Many of these organic water pollutants are recalcitrant and only partially degraded using conventional water and wastewater treatment processes. In recent decades, visible light active photocatalyst has gained attention as a non-conventional alternative for the removal of organic pollutants during water treatment, including industrial wastewater and drinking water treatment. This paper reviews the current state of research on the use of visible light active photocatalysts, their modified methods, efficacy, and pilot-scale applications for the degradation of organic pollutants in water supplies and waste streams. Initially, the general mechanism of the visible light active photocatalyst is evaluated, followed by an overview of the major synthesis techniques. Because few of these photocatalysts are commercialized, particular attention was given to summarizing the different types of visible light active photocatalysts developed to the pilot-scale stage for practical application and commercialization. The organic pollutant degradation ability of these visible light active photocatalysts was found to be considerable and in many cases comparable with existing and commercially available advanced oxidation processes. Finally, this review concludes with a summary of current achievements and challenges as well as possible directions for further research. PRACTITIONER POINTS: Visible light active photocatalysis is a promising advanced oxidation process (AOP) for the reduction of organic water pollutants. Various mechanisms of photocatalysis using visible light active materials are identified and discussed. Many recent photocatalysts are synthesized from renewable materials that are more sustainable for applications in the 21st century. Only a small number of pilot-scale applications exist and these are outlined in this review.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Civil and Environmental EngineeringTrinity College DublinDublin 2Ireland
| | - David W. O'Connell
- Department of Civil and Environmental EngineeringTrinity College DublinDublin 2Ireland
| |
Collapse
|
6
|
Abstract
These days, many countries have a water shortage and have limited access to clean water. To overcome this, a new treatment is emerging, namely, the photocatalytic processing of greywater. Photocatalytic processes to remove the organic matter from different greywater sources are critically reviewed. Their efficiency in degrading the organic matter in greywater is scrutinized along with factors that can affect the activity of photocatalysts. Modified TiO2, ZnO and TiO2 catalysts show great potential in degrading organic materials that are present in greywater. There are several methods that can be used to modify TiO2 by using sol-gel, microwave and ultrasonication. Overall, the photocatalytic approach alone is not efficient in mineralizing the organic compounds, but it works well when the photocatalysis is combined with oxidants and Fe3+. However, factors such as pH, concentration and catalyst-loading of organic compounds can significantly affect photocatalytic efficiency.
Collapse
|
7
|
Catalyst Recovery, Regeneration and Reuse during Large-Scale Disinfection of Water Using Photocatalysis. WATER 2021. [DOI: 10.3390/w13192623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The deployment of photocatalysis for remediation of water has not yet been realized, although laboratory-scale studies have demonstrated promise. Accomplishing this requires the development of photocatalysis as a process, including studying its efficiencies in remedying water when high volumes of water are processed, and addressing the recovery, possible regeneration and reuse of the photocatalysts. To that end, this work is aimed at demonstrating the use of a custom-built mobile platform for disinfecting large quantities of water. The benchtop platform built is capable of processing 15.14 L (4 gallons) per minute of water, with possibility for further scale-up. Preliminary studies on the catalyst recovery, regeneration and reuse via gravity-assisted settling, centrifugation and air plasma treatment indicated that 77% of Aeroxide® P25 titania (TiO2) nanoparticle and 57% of porous TiO2 nanowire photocatalysts could be recovered and regenerated for further use. Overall, this study indicated that process improvements, including increasing the kinetics of the photocatalysis, and optimization of the efficacies of the catalyst recovery and regeneration processes will make it useful for water remediation on any scale. More importantly, the portable and flexible nature of the benchtop photocatalysis system makes it amenable for use in conjunction with existing technologies for remedying large quantities of water.
Collapse
|
8
|
Zhang H, Sun H, Liu Y. Water reclamation and reuse. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1701-1710. [PMID: 32762059 DOI: 10.1002/wer.1425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Literature published in 2019 pertinent to water reclamation and reuse has been classified into five sections: safe reuse, treatment technologies, management, assessment, and case studies. Membranes have been widely applied in integrated processes to polish secondary effluent and achieve high-quality reclaimed water. Increased efforts have also been made to facilitate feasible and safe water reuse. PRACTITIONER POINTS: This article summarizes literature published in 2019 pertinent to water reclamation and reuse. Water reclamation and reuse can be classfied into five sections: safe reuse, treatment technology, management, assessment, and case studies. Membranes were widely used in integrated processes for the production of high-quality reclaimed water.
Collapse
Affiliation(s)
- Huixin Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Huijuan Sun
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Facile Green Synthesis of Ag@g-C3N4 for Enhanced Photocatalytic and Catalytic Degradation of Organic Pollutant. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01816-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|