1
|
Janbazi Z, Zarinkamar F, Mohsenzadeh S. Exploring the phytoremediation capacity of Portulaca oleracea naphthalene aromatic hydrocarbon contaminants: a physiological and biochemical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56079-56090. [PMID: 39256335 DOI: 10.1007/s11356-024-34909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
This study is aimed to explore the potential of purslane (Portulaca oleracea L.) as a phytoremediation candidate for the removal of naphthalene in a hydroponic system; moreover, the impacts of naphthalene on the physiological and biochemical characteristics of the plant were investigated. Four different naphthalene concentrations (0, 15, 30, and 60 ppm) were selected for the experiments, with an additional control treatment without plants containing 60 ppm naphthalene. Each treatment, utilizing a total of 20 hydroponic containers, consisted of 4 replicates. The results indicated that naphthalene led to a reduction in root and shoot growth. The root weight decreased from 17 mg in the control group to 6 mg in the 60 ppm naphthalene treatment, while the shoot weight decreased from 107.5 mg in the control group to 65.7 mg in the 60 ppm naphthalene treatment. Besides, the different naphthalene concentrations had an impact on the photosynthetic pigments. Compared to the control treatment, under severe stress conditions, chlorophyll a decreased by 51.85%, chlorophyll b decreased by 48.14%, and carotenoids decreased by 54.59%; however, anthocyanin, compared to the control treatment, increased by 30.1% under severe stress conditions. The presence of naphthalene also resulted in increased levels of malondialdehyde, hydrogen peroxide, and proline in both roots and shoots at various naphthalene concentrations. In roots, malondialdehyde increased by 40.74%, H2O2 increased by 3%, and proline increased by 75.6%, while malondialdehyde increased by 43.16%, H2O2 increased by 5.34%, and proline increased by 59.48% in shoots under severe stress conditions and compared to the control treatment. Root and shoot protein levels decreased by 64.49% and 32.26%, respectively. Furthermore, the antioxidant enzymes of glutathione S-transferase, superoxide dismutase, catalase, and ascorbate peroxidase showed increased activities in both roots and shoots under severe naphthalene stress conditions. Purslane demonstrated the ability to remove approximately 80% of naphthalene from the medium. In conclusion, this plant has an effective participation in naphthalene uptake and mitigates the adverse effects of naphthalene by enhancing antioxidant enzyme and proline activities.
Collapse
Affiliation(s)
- Zahra Janbazi
- Department of Plant Biology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Zarinkamar
- Department of Plant Biology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sasan Mohsenzadeh
- Department of Biology, Scholl of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Kösesakal T, Seyhan M. Naphthalene Stress Responses of the Aquatic fern Azolla Filiculoides Lam. and Evaluation of Phytoremediation Potential. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Taylan Kösesakal
- Department of Botany, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Müge Seyhan
- Institute of Sciences, Istanbul University, Vezneciler, Istanbul, Turkey
| |
Collapse
|
3
|
Sompark C, Singkhonrat J, Sakkayawong N. Biotransformation of Reactive Red 141 by Paenibacillus terrigena KKW2-005 and Examination of Product Toxicity. J Microbiol Biotechnol 2021; 31:967-977. [PMID: 34099601 PMCID: PMC9705871 DOI: 10.4014/jmb.2104.04041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
A total of 37 bacterial isolates were obtained from dye-contaminated soil samples at a textile processing factory in Nakhon Ratchasima Province, Thailand, and the potential of the isolates to decolorize and biotransform azo dye Reactive Red 141 (RR141) was investigated. The most potent bacterium was identified as Paenibacillus terrigena KKW2-005, which showed the ability to decolorize 96.45% of RR141 (50 mg/l) within 20 h under static conditions at pH 8.0 and a broad temperature range of 30-40°C. The biotransformation products were analyzed by using UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy. Gas chromatography-mass spectroscopy analysis revealed four metabolites generated from the reductive biodegradation, namely sodium 3-diazenylnaphthalene-1,5-disulfonate (I), sodium naphthalene-2-sufonate (II), 4-chloro-1,3,5-triazin-2-amine (III) and N1-(1,3,5-triazin-2-yl) benzene-1,4-diamine (IV). Decolorization intermediates reduced phytotoxicity as compared with the untreated dye. However, they had phytotoxicity when compared with control, probably due to naphthalene and triazine derivatives. Moreover, genotoxicity testing by high annealing temperature-random amplified polymorphic DNA technique exhibited different DNA polymorphism bands in seedlings exposed to the metabolites. They compared to the bands found in seedlings subjected to the untreated dye or distilled water. The data from this study provide evidence that the biodegradation of Reactive Red 141 by P. terrigena KKW2-005 was genotoxic to the DNA seedlings.
Collapse
Affiliation(s)
- Chalermwoot Sompark
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand, 12120
| | - Jirada Singkhonrat
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand, 12120
| | - Niramol Sakkayawong
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand, 12120,Corresponding author Phone: +66-2564-4444 ext 2068 Fax: +66-2564-4500 E-mail:
| |
Collapse
|
4
|
Ohse S, Marques MB, Silveira PC, Válega MSGA, Granato D, Silva AMS, Pinto DCGA. Inter-Individual versus Inter-Population Variability of Calendula suffruticosa subsp. algarbiensis Hexane Extracts. Chem Biodivers 2021; 18:e2100120. [PMID: 34008318 DOI: 10.1002/cbdv.202100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/26/2021] [Indexed: 11/09/2022]
Abstract
Calendula suffruticosa subsp. algarbiensis (Boiss.) Nyman is very common on the Portuguese coast, but it has only recently begun to be studied chemically and belongs to a genus of difficult taxonomic classification. To improve the knowledge on the chemical variability of this taxon and evaluate the possible use of this tool for taxonomical purposes, the aim of this work was to determine the extent of chemical variation between individuals collected in the same geographic region, and to compare with samples mixing fragments of several individuals each (populations) from different local environments. Overall, hexane extract analysis by GC/MS allowed to identify 42 compounds, eight fatty acids, 24 terpenoids, three alcohols, five alkanes, and two pollutants. Greater chemical differences were found between individuals, grown in the same region, than were found between population samples from different regions. Additionally, 25 phytochemicals were identified for this taxon for the first time and may be used for taxonomic classification, even to distinguish between subspecies of C. suffruticosa. Furthermore, plants collected near urban areas accumulated pollutants, indicating the importance of controlling local environmental conditions when C. suffruticosa cultivation is for human consumption.
Collapse
Affiliation(s)
- Silvana Ohse
- Department of Phytotechnics and Fitossanity, State University of Ponta Grossa, Campus Uvaranas, General Carlos Cavalcanti Avenue 4748, 84030-900, Ponta Grossa, Paraná, Brazil.,CESAM-Center for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Mariza B Marques
- Department of Chemistry, State University of Ponta Grossa, 84030-900, Ponta Grossa, Paraná, Brazil.,CESAM-Center for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Paulo C Silveira
- CESAM-Center for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mónica S G A Válega
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Daniel Granato
- Food Processing and Quality, Innovative Food System, Production Systems Unit-Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150, Espoo, Finland
| | - Artur M S Silva
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Diana C G A Pinto
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
5
|
Yang GL, Huang MJ, Tan AJ, Lv SM. Joint effects of naphthalene and microcystin-LR on physiological responses and toxin bioaccumulation of Landoltia punctata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105710. [PMID: 33338701 DOI: 10.1016/j.aquatox.2020.105710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
The co-contamination of naphthalene (NAP) and microcystin-LR (MC-LR) commonly occurs in eutrophic waters. However, the joint effects of NAP and MC-LR on plants in aquatic environments remain unknown. Landoltia punctata is characterized by high starch yields and high biomass in polluted waters and has been proven to be a bioenergy crop and phytoremediation plant. In this study, L. punctata was cultured in a nutrient medium with environmentally relevant NAP (0.1, 1, 3, 5, and 10 μg/L) and MC-LR (5, 10, 25, 50, and 100 μg/L) to determine individual and joint toxic effects. The effects of NAP and MC-LR on physiological responses of L. punctata, including growth, starch accumulation, and antioxidant responses, were studied. Bioaccumulation of MC-LR in L. punctata, with or without NAP, was also examined. The results showed that growth and chlorophyll-a contents of L. punctata were reduced at high concentrations of MC-LR (≥ 25 μg/L), NAP (≥ 10 μg/L) and their mixture (≥ 10 + 1 μg/L) after exposure for 7 d. Starch accumulation in L. punctata did not decrease when exposed to NAP and MC-LR, and higher starch content of 29.8 % ± 2.7 % DW could be due to the destruction of starch-degrading enzymes. The antioxidant responses of L. punctata were stronger after exposure to MC-LR + NAP than when exposed to a single pollutant, although not enough to avoid oxidative damage. NAP enhanced the bioaccumulation of MC-LR in L. punctata when NAP concentration was higher than 5 μg/L, suggesting that higher potentials of MC-LR phytoremediation with L. punctata may be observed in NAP and MC-LR co-concomitant waters. This study provides theoretical support for the application of duckweed in eutrophic waters containing organic chemical pollutants.
Collapse
Affiliation(s)
- Gui-Li Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China; Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China.
| | - Meng-Jun Huang
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ai-Juan Tan
- College of Life Sciences, Guizhou University, Guiyang 550025, China; Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 50025, China.
| |
Collapse
|
6
|
Chai L, Yang L, Zhang Y, Zhou Y, Wang F, Wu Z. Antagonism or synergism? Responses of Hydrocharis dubia (Bl.) Backer to linear alkylbenzene sulfonate, naphthalene and their joint exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110747. [PMID: 32460052 DOI: 10.1016/j.ecoenv.2020.110747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The presence of surfactants may affect the bioavailability of polycyclic aromatic hydrocarbons. A hydroponic experiment was conducted to investigate the response of Hydrocharis dubia (Bl.) Backer to different concentrations of linear alkylbenzene sulfonate (LAS), naphthalene (NAP) and their mixture (0.5, 5, 10, and 20 mg/L) for 14 days and 28 days. The results showed that LAS had a greater toxic effect on H. dubia growth than NAP at treatment concentrations of 0.5-20 mg/L. The combined effect of LAS and NAP was damaging to H. dubia at concentrations of LAS + NAP ≥5 + 5 mg/L. When LAS + NAP ≥10 + 10 mg/L, the underground parts of H. dubia suffered more significant damage than the aboveground parts. Under the treatments with LAS, NAP and their mixture, H. dubia experienced oxidative stress. Soluble proteins and antioxidant enzymes were the main substances protecting H. dubia from LAS stress, and superoxide dismutase (SOD) and peroxidase (POD) were the main protective enzymes. When exposed to NAP, H. dubia growth was stimulated and promoted at the same time. In the short-term treatment (14 d), catalase (CAT) activity was sensitive to NAP stimulation, and soluble proteins and SOD were the main protective substances produced. Soluble sugars, SOD and ascorbate peroxidase (APX) played important protective roles during the longer exposure time (28 d). The physiological response of H. dubia exposed to the combined toxicants was weaker than the response to exposure to individual toxicants. The responses of SOD and CAT activity were positive in the short term (14 d), and these were the main protective enzymes. As the exposure time increased (28 d), the plant antioxidant system responded negatively.
Collapse
Affiliation(s)
- Lulu Chai
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Lu Yang
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yizhe Zhang
- Hanjiang River Hydrology and Water Resources Survey Bureau, Hydrology Bureau of the Yangtze River Water Conservancy Committee, Xiang Yang, 441022, Hubei, China
| | - Yuhong Zhou
- Hanjiang River Hydrology and Water Resources Survey Bureau, Hydrology Bureau of the Yangtze River Water Conservancy Committee, Xiang Yang, 441022, Hubei, China
| | - Feng Wang
- Hanjiang River Hydrology and Water Resources Survey Bureau, Hydrology Bureau of the Yangtze River Water Conservancy Committee, Xiang Yang, 441022, Hubei, China
| | - Zhonghua Wu
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|