1
|
Xia C, Shen X. Analysis of factors influencing on Electro-Fenton and research on combination technology (II): a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46910-46948. [PMID: 38995339 DOI: 10.1007/s11356-024-34159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The principle of Fenton reagent is to produce ·OH by mixing H2O2 and Fe2+ to realize the oxidation of organic pollutants, although Fenton reagent has the advantages of non-toxicity and short reaction time, but there are its related defects. The Fenton-like technology has been widely studied because of its various forms and better results than the traditional Fenton technology in terms of pollutant degradation efficiency. This paper reviews the electro-Fenton technology among the Fenton-like technologies and provides an overview of the homogeneous electro-Fenton. It also focuses on summarizing the effects of factors such as H2O2, reactant concentration, reactor volume and electrode quality, reaction time and voltage (potential) on the efficiency of electro-Fenton process. It is shown that appropriate enhancement of H2O2 concentration, voltage (potential) and reaction volume can help to improve the process efficiency; the process efficiency also can be improved by increasing the reaction time and electrode quality. Feeding modes of H2O2 have different effects on process efficiency. Finally, a considerable number of experimental studies have shown that the combination of electro-Fenton with ultrasound, anodic oxidation and electrocoagulation technologies is superior to the single electro-Fenton process in terms of pollutant degradation.
Collapse
Affiliation(s)
- Chongjie Xia
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China
| | - Xinjun Shen
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China.
| |
Collapse
|
2
|
Trench AB, Fernandes CM, Moura JPC, Lucchetti LEB, Lima TS, Antonin VS, de Almeida JM, Autreto P, Robles I, Motheo AJ, Lanza MRV, Santos MC. Hydrogen peroxide electrogeneration from O 2 electroreduction: A review focusing on carbon electrocatalysts and environmental applications. CHEMOSPHERE 2024; 352:141456. [PMID: 38367878 DOI: 10.1016/j.chemosphere.2024.141456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.
Collapse
Affiliation(s)
- Aline B Trench
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Caio Machado Fernandes
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - João Paulo C Moura
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Thays S Lima
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanessa S Antonin
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - James M de Almeida
- Ilum Escola de Ciência - Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Brazil
| | - Pedro Autreto
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnologico Queretaro, 76703, Sanfandila, Pedro Escobedo, Queretaro, Mexico
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Mauro C Santos
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil.
| |
Collapse
|
3
|
Tian Y, Wu K, Lin S, Shi M, Liu Y, Su X, Islam R. Biodegradation and Decolorization of Crystal Violet Dye by Cocultivation with Fungi and Bacteria. ACS OMEGA 2024; 9:7668-7678. [PMID: 38405495 PMCID: PMC10882667 DOI: 10.1021/acsomega.3c06978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
Microbial degradation of dyes is vital to understanding the fate of dyes in the environment. In this study, a fungal strain A-3 and a bacterial strain L-6, which were identified as Aspergillus fumigatus and Pseudomonas fluorescens, respectively, had been proven to efficiently degrade crystal violet (CV) dye. The decolorization of CV dye by fungal and bacterial cocultivation was investigated. The results showed that the decolorization rate of cocultures was better than monoculture (P. fluorescens in L-6 (PF), and that of A. fumigatus A-3 (AF)). Furthermore, enzymatic analysis further revealed that Lac, MnP, Lip, and NADH-DCIP reductases were involved in the biodegradation of CV dyes. UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS) were used to examine the degradation products. GC-MS analysis showed the presence of 4-(dimethylamino) benzophenone, 3-dimethylaminophenol, benzyl alcohol, and benzaldehyde, indicating that CV was degraded into simpler compounds. The phytotoxicity tests revealed that CV degradation products were less toxic than the parent compounds, indicating that the cocultures detoxified CV dyes. As a result, the cocultures are likely to have a wide range of applications in the bioremediation of CV dyes.
Collapse
Affiliation(s)
- Yongqiang Tian
- School
of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kangli Wu
- School
of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shenghong Lin
- School
of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Meiling Shi
- School
of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Liu
- School
of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xu Su
- Key
Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization
of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China
| | - Rehmat Islam
- Key
Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
4
|
Rivera-Vera C, Rodrigo-Rodrigo MA, Saez C, Thiam A, Salazar-González R. Electrogeneration of H 2O 2 through carbon-based ink on Al foam for electro-Fenton treatment of micropollutants in water. CHEMOSPHERE 2024; 348:140764. [PMID: 37992901 DOI: 10.1016/j.chemosphere.2023.140764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
In the present work, the catalytic efficiency of inks based on different carbon materials, namely activated carbon (AC), carbon graphite (CG), and carbon black (CB) was investigated for the oxygen reduction reaction (ORR). Additionally, we explored the feasibility of using this ink as a coating for an Aluminum foam (Alfoam) cathode in an electrochemical cell. The goal was to utilize this setup to produce hydrogen peroxide (H2O2) in the electro-Fenton (EF) process, targeting for treating water contaminated with contaminants of emerging concern (CECs). Among the materials investigated, all of them exhibited the ability to facilitate the ORR. However, AC proved to be the most suitable material due to its optimal balance between physical and electrocatalytic properties, thus enabling the formation of H2O2. When the different inks were applied to the surface of aluminum foam, it was observed that only the ink based on carbon black CB achieved a homogeneous distribution with the same ink quantity. As a result, it was observed that the Alfoam/CB electrode exhibited the highest H2O2 generation capacity, producing 45.6 mg L-1, followed by electro-generation of 5.1 mg L-1 using Alfoam/AC and 11 mg L-1 using Alfoam/CG. Furthermore, the application of Alfoam/CB in EF processes allowed for the almost complete degradation of 15 emerging contaminants of concern (CECs) present in secondary effluent. The innovative outcome of this study positions the developed technology as a promising and effective alternative for the treatment of water contaminated with CECs, demonstrating significant potential for industrial-scale application.
Collapse
Affiliation(s)
- Camilo Rivera-Vera
- Department of Chemical of Materials, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago, Chile; Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| | - Manuel A Rodrigo-Rodrigo
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Cristina Saez
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Abdoulaye Thiam
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago, Chile
| | - Ricardo Salazar-González
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
5
|
Aravind P, Vasudevan S. Glucose driven self-sustained electro-Fenton platform for remediation of 2,4-dichlorophenoxy herbicide contaminated water. ENVIRONMENTAL TECHNOLOGY 2024; 45:61-72. [PMID: 35793114 DOI: 10.1080/09593330.2022.2099310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
As electrochemical oxidation technologies are energy-intensive, they are sparsely included in wastewater treatment plants. This study demonstrates a self-reliable glucose driven-electro-Fenton (GD-EF) system for decontamination of 2,4-dichlorophenoxy (2,4-D) herbicides without the supply of external current or voltage. It incorporates a cathode (graphite) which accepts electrons from abiotic glucose oxidation at anode (Pt/Ti or BDD or PbO2/Cu/Ti) and generates in situ H2O2. For the first time, the ability of Pt/Ti, BDD, and PbO2/Cu/Ti anodes in GD-EF and their influence on 2,4-D decontamination rate have been studied. Pt/Ti and PbO2/Cu/Ti exhibited maximum power densities of 60.42 and 219.3 µW cm-2, respectively than BDD (2.418 µW cm-2). Even though Pt/Ti fuel cell exhibited lower power density than the PbO2/Cu/Ti - fuel cell, it had a faster 2,4-D degradation rate of k = 18 × 10-3 s-1. The generated cathodic potential of -0.275 mV vs. Ag/AgCl in the Pt/Ti-fuel cell was sufficient to produce 23 mg L-1h-1 of H2O2. The high performance liquid chromatography analysis reveals the complete transformation of 2,4-D in 540 min and its degradation by 95% in 1080 min. This finding paves the way for greener decontamination of bio-recalcitrant herbicides with zero electrochemical energy consumption.
Collapse
Affiliation(s)
- Priyadharshini Aravind
- Electro Inorganic Chemicals Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India
| | - Subramanyan Vasudevan
- Electro Inorganic Chemicals Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India
| |
Collapse
|
6
|
Titchou FE, Zazou H, Afanga H, El Gaayda J, Ait Akbour R, Lesage G, Rivallin M, Cretin M, Hamdani M. Electrochemical oxidation treatment of Direct Red 23 aqueous solutions: Influence of the operating conditions. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1982978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fatima Ezzahra Titchou
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| | - Hicham Zazou
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| | - Hanane Afanga
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| | - Jamila El Gaayda
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| | - Rachid Ait Akbour
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| | - Geoffroy Lesage
- Institut Européen des Membranes, Iem, Univ Montpellier, Cnrs, Enscm, Montpellier, France
| | - Matthieu Rivallin
- Institut Européen des Membranes, Iem, Univ Montpellier, Cnrs, Enscm, Montpellier, France
| | - Marc Cretin
- Institut Européen des Membranes, Iem, Univ Montpellier, Cnrs, Enscm, Montpellier, France
| | - Mohamed Hamdani
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| |
Collapse
|
7
|
Senthilnathan J, Younis SA, Kwon EE, Surenjan A, Kim KH, Yoshimura M. An efficient system for electro-Fenton oxidation of pesticide by a reduced graphene oxide-aminopyrazine@3DNi foam gas diffusion electrode. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123323. [PMID: 32947720 DOI: 10.1016/j.jhazmat.2020.123323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
A stable rGO-AmPyraz@3DNiF gas diffusion electrode was prepared via modification of 3D nickel foam (3D-NiF) with aminopyrazine functionalized reduced graphene oxide (rGO-AmPyraz) for the electro Fenton (EF) process. The generation capacity of H2O2 and OH radicals by this electrode was assessed relative to 3DNiF and rGO-AmPyraz@indium tin oxide (ITO) electrodes and with/without a coated Fe3O4 plate. The rGO-AmPyraz@3DNiF electrode showed the maximum production of these radicals at 2.2 mmol h-1 and 410 μmol h-1, respectively (pH 3) with the least leaching of Ni2+ such as < 0.5 mg L-1 even after 5 cycles (e.g., relative to 3DNiF (24 mg L-1). Such control on Ni ion leaching was effective all across the tested pH from 3 to 8.5. Its H2O2 generation capacity was far higher than that of the nanocarbon supported on commercially available ITO conductive glass. The mineralization of dichlorvos (at initial concentration: 50 mg L-1) was confirmed with its complete degradation as the concentrations of the end products (e.g., free Cl-1 (5.36 mg L-1) and phosphate (12.89 mg L-1)) were in good agreement with their stoichiometric concentration in dichlorvos. As such, the proposed system can be recommended as an effective electrode to replace nanocarbon-based product commonly employed for EF processes.
Collapse
Affiliation(s)
- Jaganathan Senthilnathan
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05005, Republic of Korea
| | - Anupama Surenjan
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Masahiro Yoshimura
- Department of Material Science and Engineering, National Cheng Kung University, Taiwan
| |
Collapse
|