1
|
Yadav A, Sharma N, Yadav S, Sharma AK, Kumar S. Revealing the interface chemistry of polyaniline grafted biomass via statistical modeling of multi-component dye systems: optimization, kinetics, thermodynamics, and adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21302-21325. [PMID: 38383933 DOI: 10.1007/s11356-024-32523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
The growing need to examine the adsorption capabilities of innovative materials in real-world water samples has encouraged a shift from single to multicomponent adsorption systems. In this study, a novel composite, PANI-g-SM was synthesized by covalently grafting a lignocellulosic biomass, Saccharum munja (SM) with polyaniline (PANI). The as-synthesized composite was investigated for the simultaneous adsorption of cationic (Methylene Blue (MB); Crystal Violet (CV)) and anionic dyes (Reactive Red 35 (RR); Fast Green FCF (FG)) from four single components and two binary systems, MB + RR and CV + FG. Further, the effect and interaction of pH (2-11), dosage (0.01-0.04 g/10 mL), and initial concentration (0.0313 to 0.1563 mmol/L) on the elimination of dyes by PANI-g-SM were studied through a novel design of Box-Behnken of Response Surface Methodology (RSM) technique which was found to be highly useful for revealing the chemistry of interfaces in multi-component systems. The extended Langmuir model for the binary system indicated the presence of synergism, as result the maximum monolayer adsorption capacity increased by 44.44%, 645.83%, 67.88%, and 441.07% for MB, RR, CV, and FG dye, respectively. Further, the adsorption process mainly followed a pseudo-second-order kinetic model, and the thermodynamic studies revealed the exothermic nature of adsorption for RR and FG dye while endothermic for MB and CV dye, respectively with Δ G varying from - 1.68 to - 6.12 kJ/mol indicating the spontaneity of the process. Importantly, the efficacy of the composite was evaluated for the treatment of textile industry effluent highlighting its potential as an adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Aruna Yadav
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Nishita Sharma
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Sarita Yadav
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Ashok K Sharma
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, 131039, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India.
| |
Collapse
|
2
|
Saharan P, Kumar V, Kaushal I, Mittal A, Shukla SK, Kumar D, Sharma AK, Om H. A comprehensive review on the metal-based green valorized nanocomposite for the remediation of emerging colored organic waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45677-45700. [PMID: 36826768 DOI: 10.1007/s11356-023-25998-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/14/2023] [Indexed: 04/15/2023]
Abstract
In today's era, "green" synthesis is an emerging research trend. It has gained widespread attention owing to its dynamic behavior, reliability, simplicity, sustainability, and environment friendly approach for fabricating various nanomaterials. Green fabrication of metal/metal oxides nanomaterials, hybrid materials, and other metal-based nanocomposite can be utilized to remove toxic colored aqueous pollutants. Nanomaterials synthesized by using green approach is considered to be the significant tool to minimize unwanted or harmful by-products otherwise released from traditional synthesis methods. Various kinds of biosynthesized nanomaterials, such as animal waste and plant-based, have been successfully applied and well documented in the literature. However, their application part, especially for the cure of colored organic polluted water, has not been reported as a single review article. Therefore, the current work aims to assemble reports on using novel biosynthesized green metal-based nanomaterials to exclude harmful dyes from polluted water.
Collapse
Affiliation(s)
- Priya Saharan
- Centre of Excellence for Energy and Environment, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Vinit Kumar
- Central Instrumentation Laboratory, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Indu Kaushal
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Alok Mittal
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal, India
| | - Saroj K Shukla
- Department of Polymer Science, Bhaskaryacharya College of Applied Sciences, Delhi, India
| | - Dharmender Kumar
- Department of Biotechnology, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Ashok K Sharma
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India.
| | - Hari Om
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| |
Collapse
|
3
|
Environmental application of Saccharum munja biomass-derived hybrid composite for the simultaneous removal of cationic and anionic dyes and remediation of dye polluted water: A step towards pilot-scale studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Simultaneous adsorption of three anionic dyes at neutral pH from their individual and multi-component systems on a CTAB modified Pennisetum glaucum based carbon nanotube green composite: Adsorption mechanism and process optimization by Box-Behnken design model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Shi X, Cheng C, Peng F, Hou W, Lin X, Wang X. Adsorption properties of graphene materials for pesticides: structure effect. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Electroconductive green metal‐polyaniline nanocomposites: synthesis and application in sensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Li J, Liu X, Luo H, Zhao D, Zhang J, Qiao C, Ma Y, Huo D, Hou C. A Gold Nanorods Etching Based Colorimetric Sensor Array for the Detection of Reducing Substances and Discrimination of Chinese Baijiu. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02269-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
In-situ fabrication of surfactant modified CNT-based novel bio-composite and its performance evaluation for simultaneous removal of anionic dyes: Optimization by Box-Behnken design. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120262] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Yadav A, Bagotia N, Sharma AK, Kumar S. Simultaneous adsorptive removal of conventional and emerging contaminants in multi-component systems for wastewater remediation: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149500. [PMID: 34388884 DOI: 10.1016/j.scitotenv.2021.149500] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The rapid growth of population and industrialization results in pollution of freshwater sources which leads to the water stress conditions on the world in future. Adsorption is a low cost and popular technique for the removal of contaminants from water bodies. Most of the reports till date are on removal of a single component from aqueous solutions using this technique, but the real-world effluent contains multiple contaminants such as dyes, heavy metals, pesticides, antibiotics and many more. Therefore, a study on simultaneous removal of contaminants is highly needed to obtain a suitable adsorbent that can be used commercially. This critical review provides a detailed study on the removal of contaminants in the presence of other contaminant/s i.e., from a multi-component system (MCS). The different possible interaction mechanisms in MCS like synergism, antagonism and non-interaction are discussed. The MCS containing the mixture of conventional contaminants such as heavy metals and dyes, and other emerging contaminants such as antibiotics, organic contaminants, pesticides and personal care products are explained in depth. This review article will be helpful for researchers working in the field of simultaneous removal of contaminants from MCSs for wastewater remediation.
Collapse
Affiliation(s)
- Aruna Yadav
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India
| | - Nisha Bagotia
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India
| | - Ashok K Sharma
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana 131039, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India.
| |
Collapse
|
10
|
Mahmud HNME, Kamal SJ, Mohamad N, Sharma AK, Saharan P, Santos JH, Zakaria SNA. Nanoconducting polymer: an effective adsorbent for dyes. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01665-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Saharan P, Kumar V, Mittal J, Sharma V, Sharma AK. Efficient ultrasonic assisted adsorption of organic pollutants employing bimetallic-carbon nanocomposites. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1866608] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Priya Saharan
- Thin Film Laboratory, Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Haryana, India
| | - Vinit Kumar
- Central Instrumentation Laboratory, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Haryana, India
| | - Jyoti Mittal
- Department of Chemistry, Maulana Azad National Institute of Technology Bhopal, Bhopal, Madhya Pradesh, India
| | - Vishal Sharma
- Fullbright Climate Fellow, National Renewable Energy Laboratory, Golden, CO, USA
| | - Ashok K. Sharma
- Thin Film Laboratory, Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Haryana, India
| |
Collapse
|
12
|
Liu S, Cui S, Guo H, Wang Y, Zheng Y. Adsorption of Lead Ion from Wastewater Using Non-Crystal Hydrated Calcium Silicate Gel. MATERIALS (BASEL, SWITZERLAND) 2021; 14:842. [PMID: 33578734 PMCID: PMC7916452 DOI: 10.3390/ma14040842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
In order to obtain low-cost and excellent adsorption materials, this paper used calcium acetate and water glass as raw materials to synthesis hydrated calcium silicate gel by precipitation method. The performance and structure of hydrated calcium silicate gel were systematically studied by X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, specific surface area analyzer and scanning electron microscope. Studies have shown that, non-crystal hydrated calcium silicate gel (CSH) were successfully prepared, and the removal rate of lead ion using CSH reached more than 90%. The adsorption process is consistent with the pseudo-second-order kinetic model and Langmuir adsorption isotherm model, and the limit adsorption capacity reaches 263.17 mg·g-1. The acid treatment experiment proved that the adsorption capacity of lead ion using CSH was satisfactory, and the adsorption rate remained at >60% after 5 cycles. The research may provide a low-cost, high-efficiency and high stability adsorbent.
Collapse
Affiliation(s)
| | - Suping Cui
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China; (S.L.); (H.G.); (Y.W.); (Y.Z.)
| | | | | | | |
Collapse
|