1
|
Peer Muhamed Noorani KR, Flora G, Surendarnath S, Mary Stephy G, Amesho KTT, Chinglenthoiba C, Thajuddin N. Recent advances in remediation strategies for mitigating the impacts of emerging pollutants in water and ensuring environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119674. [PMID: 38061098 DOI: 10.1016/j.jenvman.2023.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 01/14/2024]
Abstract
The proliferation of emerging pollutants (EPs), encompassing a range of substances such as phthalates, phenolics, pharmaceuticals, pesticides, personal care products, surfactants, and disinfection agents, has become a significant global concern due to their potential risks to the environment and human well-being. Over the past two decades, numerous research studies have investigated the presence of EPs in wastewater and aquatic ecosystems, with the United States Environmental Protection Agency (USEPA) categorizing these newly introduced chemical compounds as emerging contaminants due to their poorly understood impact. EPs have been linked to adverse health effects in humans, including genotoxic and cytotoxic effects, as well as conditions such as obesity, diabetes, cardiovascular disease, and reproductive abnormalities, often associated with their estrogenic action. Microalgae have shown promise in the detoxification of both inorganic and organic contaminants, and several large-scale microalgal systems for wastewater treatment have been developed. However, the progress of algal bioremediation can be influenced by accidental contaminations and operational challenges encountered in pilot-scale research. Microalgae employ various processes, such as bioadsorption, biouptake, and biodegradation, to effectively remediate EPs. During microalgal biodegradation, complex chemical compounds are transformed into simpler substances through catalytic metabolic degradation. Integrating algal bioremediation with existing treatment methodologies offers a viable approach for efficiently eliminating EPs from wastewater. This review focuses on the use of algal-based biological remediation processes for wastewater treatment, the environmental impacts of EPs, and the challenges associated with implementing algal bioremediation systems to effectively remove emerging pollutants.
Collapse
Affiliation(s)
- Kalilur Rahman Peer Muhamed Noorani
- National Repository for Microalgae and Cyanobacteria - Freshwater (NRMC-F), (Sponsored by DBT, Govt. of India), Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - G Flora
- PG and Research Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - S Surendarnath
- Department of Mechanical Engineering, DVR & Dr. HS MIC College of Technology (A), Vijayawada, 521 180, Andhra Pradesh, India
| | - G Mary Stephy
- PG and Research Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia; Destinies Biomass Energy and Farming Pty Ltd, P.O.Box 7387, Swakomund, Namibia
| | | | - Nooruddin Thajuddin
- National Repository for Microalgae and Cyanobacteria - Freshwater (NRMC-F), (Sponsored by DBT, Govt. of India), Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, India; School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
2
|
Upadhyay SK, Rani N, Kumar V, Mythili R, Jain D. A review on simultaneous heavy metal removal and organo-contaminants degradation by potential microbes: Current findings and future outlook. Microbiol Res 2023; 273:127419. [PMID: 37276759 DOI: 10.1016/j.micres.2023.127419] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Industrial processes result in the production of heavy metals, dyes, pesticides, polyaromatic hydrocarbons (PAHs), pharmaceuticals, micropollutants, and PFAS (per- and polyfluorinated substances). Heavy metals are currently a significant problem in drinking water and other natural water bodies, including soil, which has an adverse impact on the environment as a whole. The heavy metal is highly poisonous, carcinogenic, mutagenic, and teratogenic to humans as well as other animals. Multiple polluted sites, including terrestrial and aquatic ecosystems, have been observed to co-occur with heavy metals and organo-pollutants. Pesticides and heavy metals can be degraded and removed concurrently from various metals and pesticide-contaminated matrixes due to microbial processes that include a variety of bacteria, both aerobic and anaerobic, as well as fungi. Numerous studies have examined the removal of heavy metals and organic-pollutants from different types of systems, but none of them have addressed the removal of these co-occurring heavy metals and organic pollutants and the use of microbes to do so. Therefore, the main focus of this review is on the recent developments in the concurrent microbial degradation of organo-pollutants and heavy metal removal. The limitations related to the simultaneous removal and degradation of heavy metals and organo-pollutant pollutants have also been taken into account.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur 222003, Uttar Pradesh, India.
| | - Nitu Rani
- Department of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
| | - Vinay Kumar
- Divisional Forest Office, Social Forestry Division Fatehpur, Uttar Pradesh, India; Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College, Chennai 600077, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur 313001, India
| |
Collapse
|
3
|
El-Shafie AS, Barah FG, Abouseada M, El-Azazy M. Performance of Pristine versus Magnetized Orange Peels Biochar Adapted to Adsorptive Removal of Daunorubicin: Eco-Structuring, Kinetics and Equilibrium Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091444. [PMID: 37176989 PMCID: PMC10179814 DOI: 10.3390/nano13091444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Drugs and pharmaceuticals are an emergent class of aquatic contaminants. The existence of these pollutants in aquatic bodies is currently raising escalating concerns because of their negative impact on the ecosystem. This study investigated the efficacy of two sorbents derived from orange peels (OP) biochar (OPBC) for the removal of the antineoplastic drug daunorubicin (DNB) from pharmaceutical wastewater. The adsorbents included pristine (OPBC) and magnetite (Fe3O4)-impregnated (MAG-OPBC) biochars. Waste-derived materials offer a sustainable and cost-effective solution to wastewater bioremediation. The results showed that impregnation with Fe3O4 altered the crystallization degree and increased the surface area from 6.99 m2/g in OPBC to 60.76 m2/g in the case of MAG-OPBC. Placket-Burman Design (PBD) was employed to conduct batch adsorption experiments. The removal efficiency of MAG-OPBC (98.51%) was higher compared to OPBC (86.46%). DNB adsorption onto OPBC followed the D-R isotherm, compared to the Langmuir isotherm in the case of MAG-OPBC. The maximum adsorption capacity (qmax) was 172.43 mg/g for MAG-OPBC and 83.75 mg/g for OPBC. The adsorption kinetics for both sorbents fitted well with the pseudo-second-order (PSO) model. The results indicate that MAG-OPBC is a promising adsorbent for treating pharmaceutical wastewater.
Collapse
Affiliation(s)
- Ahmed S El-Shafie
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Farahnaz G Barah
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Maha Abouseada
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
4
|
Pourmoheb Hosseini SM, Chaibakhsh N. Application of plant-based coagulant with a novel MnO 2.MoS 2 nanocatalyst in coagulation/photocatalytic ozonation process for wastewater treatment. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2166844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Naz Chaibakhsh
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|