1
|
Bendejacq-Seychelles A, Gibot-Leclerc S, Guillemin JP, Mouille G, Steinberg C. Phytotoxic fungal secondary metabolites as herbicides. PEST MANAGEMENT SCIENCE 2024; 80:92-102. [PMID: 37794581 DOI: 10.1002/ps.7813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
Among the alternatives to synthetic plant protection products, biocontrol appears as a promising method. This review reports on the diversity of fungal secondary metabolites phytotoxic to weeds and on the approach generally used to extract, characterize, identify and exploit them for weed management. The 183 phytotoxic fungal secondary metabolites discussed in this review fall into five main classes of molecules: 61 polyketides, 53 terpenoids, 36 nitrogenous metabolites, 18 phenols and phenolic acids, and 15 miscellaneous. They are mainly produced by the genera Drechslera, Fusarium and Alternaria. The phytotoxic effects, more often described by the symptoms they produce on plants than by their mode of action, range from inhibition of germination to inhibition of root and vegetative growth, including tissue and organ alterations. The biochemical characterization of fungal secondary metabolites requires expertise and tools to carry out fungal cultivation and metabolite extraction, phytotoxicity tests, purification and fractionation of the extracts, and chemical identification procedures. Phytotoxicity tests are mainly carried out under controlled laboratory conditions (not always on whole plants), while effectiveness against targeted weeds and environmental impacts must be assessed in greenhouses and open fields. These steps are necessary for the formulation of effective, environment-friendly fungal secondary metabolites-derived bioherbicides using new technologies such as nanomaterials. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Bendejacq-Seychelles
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Gibot-Leclerc
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| | - Jean-Philippe Guillemin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| | - Gregory Mouille
- Univ Paris Saclay, AgroParisTech, INRAE, Inst Jean Pierre Bourgin, Versailles, France
| | - Christian Steinberg
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
2
|
Camargo AF, Bonatto C, Scapini T, Klanovicz N, Tadioto V, Cadamuro RD, Bazoti SF, Kubeneck S, Michelon W, Reichert Júnior FW, Mossi AJ, Alves Júnior SL, Fongaro G, Treichel H. Fungus-based bioherbicides on circular economy. Bioprocess Biosyst Eng 2023; 46:1729-1754. [PMID: 37743409 DOI: 10.1007/s00449-023-02926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
This review aimed to show that bioherbicides are possible in organic agriculture as natural compounds from fungi and metabolites produced by them. It is discussed that new formulations must be developed to improve field stability and enable the commercialization of microbial herbicides. Due to these bottlenecks, it is crucial to advance the bioprocesses behind the formulation and fermentation of bio-based herbicides, scaling up, strategies for field application, and the potential of bioherbicides in the global market. In this sense, it proposed insights for modern agriculture based on sustainable development and circular economy, precisely the formulation, scale-up, and field application of microbial bioherbicides.
Collapse
Affiliation(s)
- Aline Frumi Camargo
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Thamarys Scapini
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Natalia Klanovicz
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, University of São Paulo, São Paulo, Brazil
| | - Viviani Tadioto
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Suzana Fátima Bazoti
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | | | | | - Altemir José Mossi
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | | | - Gislaine Fongaro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Helen Treichel
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil.
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil.
| |
Collapse
|
3
|
Shi L, Han L, Zhao Z, Li Q, Wang Y, Ding G, Xing X. Furanoids from the Gymnadenia conopsea (Orchidaceae) seed germination supporting fungus Ceratobasidium sp. (GS2). Front Microbiol 2022; 13:1037292. [PMID: 36466680 PMCID: PMC9712750 DOI: 10.3389/fmicb.2022.1037292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 02/18/2024] Open
Abstract
Five furanoids including a new analog (S)-1,4-di(furan-2-yl)-2-hydroxybutane-1,4-dione (1) together with four known ones, rhizosolaniol (2), 5-hydroxymethylfurfural (3), 2-furoic acid (4) and (2-furyl) oxoacetamide (5), were isolated from the fungal strain Ceratobasidium sp. (GS2) inducing seed germination of the endangered medicinal plant Gymnadenia conopsea of Orchidaceae. The structure of new furanoid 1 was determined mainly based on HR-ESI-MS and NMR spectral data. Modified Mosher's reactions were used to establish the stereochemistry of the hydroxyl group in 1, which was not stable in Mosher's reagents and transformed into four analogs 6-9. These degraded products (6-9) were elucidated based on UPLC-Q-TOF-MS/MS analysis, and compound 8 was further isolated from the degraded mixture and its structure was characterized through NMR experiments. Therefore, the absolute configuration of compound 1 was determined by electronic circular dichroism combined with quantum-chemical calculations adopting time-dependent density functional theory. Compounds (1-5), and 8 showed weak antioxidant activities, and compounds (2-4) displayed phytotoxicity on punctured detached green foxtail leaves. In addition, compounds 3 and 4 strongly showed inhibition activities on the seed germination of G. conopsea. This was the first chemical investigation of the symbiotic fungus of G. conopsea.
Collapse
Affiliation(s)
- Lixin Shi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Han
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zeyu Zhao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanduo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoke Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Portela VO, Santana NA, Balbinot ML, Antoniolli ZI, de Oliveira Silveira A, Jacques RJS. Phytotoxicity Optimization of Fungal Metabolites Produced by Solid and Submerged Fermentation and its Ecotoxicological Effects. Appl Biochem Biotechnol 2022; 194:2980-3000. [PMID: 35316475 DOI: 10.1007/s12010-022-03884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Research and commercial production of bioherbicides occur to a lesser extent compared to bioinsecticides and biofungicides. In order to contribute to developing new bioherbicides with low environmental impact, this study aimed to increase the phytotoxicity of metabolites of the fungus Mycoleptodiscus indicus UFSM 54 by optimizing solid and submerged fermentation and evaluate the ecotoxicological effects on earthworms (Eisenia andrei). The Plackett-Burman and central composite rotatable designs were used to optimize metabolite phytotoxicity. The variables optimized in the fermentation were temperature, agitation, pH, water volume in the culture medium, glucose concentration, and yeast extract. The fungus was grown on sugarcane bagasse substrate, and its metabolites were applied to detached Cucumis sativus, Conyza sp., and Sorghum bicolor leaves and used in an avoidance test and acute exposure to earthworms. Metabolite phytotoxicity in submerged fermentation was optimized at 35 °C, 50 rpm, and 1.5 g l-1 of glucose and in solid fermentation at 30-37 °C and in 14-32 ml of water. The metabolites severely damaged germination, initial growth, and leaves of the three plants, and at the doses tested (maximum of 113.92 ml kg-1), the metabolites of M. indicus UFSM 54 were not toxic to earthworms.
Collapse
Affiliation(s)
- Valéria Ortaça Portela
- Department of Soils, Federal University of Santa Maria, 97.105-900, Santa Maria, RS, Brazil
| | - Natielo Almeida Santana
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Brazil, 97.105-900, Santa Maria, RS, Brazil
| | - Michele Lusa Balbinot
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Brazil, 97.105-900, Santa Maria, RS, Brazil
| | - Zaida Inês Antoniolli
- Department of Soils, Federal University of Santa Maria, 97.105-900, Santa Maria, RS, Brazil
| | - Andressa de Oliveira Silveira
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Brazil, 97.105-900, Santa Maria, RS, Brazil
| | | |
Collapse
|
5
|
Duke SO, Pan Z, Bajsa-Hirschel J, Boyette CD. The potential future roles of natural compounds and microbial bioherbicides in weed management in crops. ADVANCES IN WEED SCIENCE 2022; 40. [PMID: 0 DOI: 10.51694/advweedsci/2022;40:seventy-five003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|