1
|
Gureeva MV, Muntyan MS, Ravin NV, Grabovich MY. Wastewater Treatment with Bacterial Representatives of the Thiothrix Morphotype. Int J Mol Sci 2024; 25:9093. [PMID: 39201777 PMCID: PMC11355018 DOI: 10.3390/ijms25169093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Bacteria of the Thiothrix morphotype, comprising the genera Thiothrix, Thiolinea and Thiofilum, are frequently encountered in domestic and industrial wastewater treatment systems, but they are usually not clearly differentiated due to the marked similarity in their morphologies. Methods ranging from light microscopy, FISH and PCR to modern high-throughput sequencing are used to identify them. The development of these bacteria in wastewater treatment systems has both advantages and disadvantages. On the one hand, the explosive growth of these bacteria can lead to activated sludge bulking or clogging of the treatment system's membranes, with a consequent decrease in the water treatment efficiency. On the other hand, members of the Thiothrix morphotype can improve the quality of granular sludge and increase the water treatment efficiency. This may be due to their capacity for sulfide oxidation, denitrification combined with the oxidation of reduced sulfur compounds, enhanced biological phosphate removal and possibly denitrifying phosphate removal. The recently obtained pangenome of the genus Thiothrix allows the explanation, at the genomic level, of the experimental results of various studies. Moreover, this review summarizes the data on the factors affecting the proliferation of representatives of the Thiothrix morphotype.
Collapse
Affiliation(s)
- Maria V. Gureeva
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia;
| | - Maria S. Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33-2, 119071 Moscow, Russia;
| | - Margarita Yu. Grabovich
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia;
| |
Collapse
|
2
|
Wang C, Chai X, Lu B, Lu W, Han H, Mu Y, Gu Q, Wu B. Integrated control strategy for dual sludge ages in the high-concentration powder carrier bio-fluidized bed (HPB) technology: Enhancing municipal wastewater treatment efficiency. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119890. [PMID: 38160542 DOI: 10.1016/j.jenvman.2023.119890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The high-concentration powder carrier bio-fluidized bed (HPB) technology is an emerging approach that enables on-site upgrading of wastewater treatment plants (WWTPs). HPB technology promotes the formation of biofilm sludge with micron-scale composite powder carriers as the core and suspended sludge mainly composed of flocs surrounding the biofilm sludge. This study proposed a novel integrated strategy for assessing and controlling the sludge ages in suspended/bio-film activated sludge supported by micron-scale composite powder carrier. Utilizing the cyclone unit and the corresponding theoretical model, the proposed strategy effectively addresses the sludge ages contradiction between denitrifying bacteria and polyphosphate-accumulating organisms (PAOs), thereby enhancing the efficiency of municipal wastewater treatment. The sludge age of the suspended (25 d) and bio-film (99 d) sludge, calculated using the model, contribute to the simultaneous removal of nitrogen and phosphorus. Meanwhile, the model further estimates distinct contributions of suspended and bio-film sludge to chemical oxygen demand (COD) and total nitrogen (TN), which are 55% and 42% for COD, 20% and 57% for TN of suspended sludge and bio-film sludge, respectively. This suggests that the contribution of suspended sludge and bio-film sludge to COD and TN removal efficiency can be determined and controlled by the operational conditions of the cyclone unit. Additionally, the simulation values for COD, ammonia nitrogen (NH4+-N), TN and total phosphorus (TP) closely align with the actual values of WWTPs over 70 days (p < 0.001) with the correlation coefficients (R2) of 0.9809, 0.9932, 0.9825, and 0.837, respectively. These results support the theoretical foundation of HPB technology for simultaneous nitrogen and phosphorus removal in sewage treatment plants. Therefore, this model serves as a valuable tool to guide the operation, design, and carrier addition in HPB technology implementation.
Collapse
Affiliation(s)
- Chengxian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wei Lu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Hongbo Han
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, 410205, China
| | - Yue Mu
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, 410205, China
| | - Qun Gu
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, 410205, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
Ai S, Chang C, Zhang H, Wang Z, Kang H, Bian D. Performance of micro-pressure double-cycle coupled membrane integrated bioreactor for the treatment of urban sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15525-15537. [PMID: 38296926 DOI: 10.1007/s11356-024-32164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Based on the theory of nitrogen and phosphorus removal and technical requirements, a micro-pressure double-cycle bioreactor coupled with membrane components was used to treat municipal wastewater. The method realized the simultaneous removal of organic matter, nitrogen, and phosphorus in the same reactor and had the characteristics of membrane bioreactor process. Results showed that the average removal efficiency of COD, NH+4-N, TN, and TP were 93.74%, 95.1%, 71.85%, and 81.03%, respectively. During operation, Proteobacteria and Bacteroidetes were the main dominant bacteria, and they had complete nitrogen and phosphorus metabolic pathways. Owing to the low protein content in the mixture, the design of film placement in the micro-precipitation zone was conducive to alleviating the membrane pollution caused by the accumulation of protein, thereby improving the effluent quality and extending the service life of the membrane components.
Collapse
Affiliation(s)
- Shengshu Ai
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012, China
| | - Chunlin Chang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012, China
| | - Haigang Zhang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012, China
| | - Ziheng Wang
- Berlin Changchun High-Tech Wastewater Treatment Co. Ltd., 130000, Changchun, China
| | - Hua Kang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012, China
| | - Dejun Bian
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012, China.
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|