1
|
AlSalem HS, Alatawi RAS, Bukhari AAH, Alnawmasi JS, Zghab I, El-Desouky MG, Almabadi MH, Alnakhli ZH, Elsayed NH. Adsorption and removal of Pb (II) via layer double hydroxide encapsulated with chitosan; synthesis, characterization adsorption isotherms, kinetics, thermodynamics, & optimization via Box-Behnken design. Int J Biol Macromol 2024:137517. [PMID: 39542326 DOI: 10.1016/j.ijbiomac.2024.137517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/13/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
The study aimed to enhance the stability and efficiency of removing bivalent Pb(II) by encapsulating AlNi-layered double hydroxide (LDH) in chitosan and itaconic acid to create an adsorbent with chemically active sites. The resulting material, AlNi-LDH/CS, underwent thorough property analysis using XRD, FT-IR, XPS, EDX, N2 adsorption/desorption isotherm, and FESEM to find out what textural characteristics it has. Specifically, nitrogen adsorption/desorption isotherms were utilized to assess the textural properties of AlNi-LDH/CS. The Al/Ni-LDH/CS surface displayed a specific surface area of 71.95 m2/g and an average pore size of 2.537 nm, consistent with the platelets' external surface. The effects of dose, pH, temperature, and starting concentration on the adsorption process were also investigated in this study. The adsorption characteristics have been examined by means of equilibrium and adsorption kinetics. The adsorption process adhered to the pseudo-second-order and Langmuir isotherm models. The predominant adsorption process was found to be chemisorption, which had an adsorption energy of 28.42 kJ·mol-1. An endothermic and spontaneous adsorption process is suggested by the increase in metal absorption at increasing temperatures. The Box-Behnken design software was utilized to establish the optimal adsorption parameters as pH 5, a dosage of 0.2 g of AlNi-LDH/CS per 25 mL, and an adsorption capacity of 453.05 mg/g for the Pb(II) arsenate solution. For the composite sponge to be most effective in adsorbing arsenate and be used in water purification procedures, these factors are essential. The adsorption process was successfully improved with few planned tests by applying the Box-Behnken design and response surface technique aspects of the Design-Expert software. An evaluation of the adsorbent's reusability using six successive cycles of adsorption and desorption confirmed its stability and showed no discernible decrease in removal efficiency. Additionally, it retained its original chemical composition before and after reuse, showcased consistent efficiency, and maintained uniform XRD data.
Collapse
Affiliation(s)
- Huda S AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Raedah A S Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | | | - Jawza Sh Alnawmasi
- Department of Chemistry, College of Science, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| | - Imen Zghab
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | | | - Meshal H Almabadi
- Department of Chemistry, Applied College, University of Jeddah, Jeddah, Saudi Arabia
| | - Zainab Hassan Alnakhli
- Department of Chemistry, Faculty of Science and Humanities, Shaqra University, P.O. Box 33, Dawadmi 17452, Saudi Arabia
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia.
| |
Collapse
|
2
|
Al-Qahtani SD, Alhasani M, Alkhathami N, Abu Al-Ola KA, Alkhamis K, El-Desouky MG, El-Bindary AA. Effective levofloxacin adsorption and removal from aqueous solution onto tea waste biochar; synthesis, characterization, adsorption studies, and optimization by Box-Behnken design and its antibacterial activity. ENVIRONMENTAL TECHNOLOGY 2024; 45:4928-4950. [PMID: 37953534 DOI: 10.1080/09593330.2023.2283409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/30/2023] [Indexed: 11/14/2023]
Abstract
ABSTRACTResearch efforts are focusing on investigating cost-effective and ecologically friendly ways to create nanoparticles as a result of promising developments in green technology (NPs). This experiment focused on the effectiveness of using biochar (TWB) made from coffee waste to extract levofloxacin (LEV) from water. The conclusive results of the trials showed that TWB is an effective adsorbent for removing LEV from liquid solutions. The TWB produced through biological processes underwent comprehensive analysis using techniques such as X-ray diffractometry (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area measurement (BET), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. The bioengineered TWB's exceptional crystalline properties, which closely resemble the monoclinic structure of bulk TWB, were confirmed by the XRD analysis. Based on the scanning electron microscopy (SEM) data, the synthesis of TWB Nanoparticles resulted in the formation of spherical particles with an approximate diameter of 40 nm, accompanied by a substantial surface area of 285.55 m²/g. The Pseudo-Second-Order model, which best captured Levofloxacin's adsorption characteristics, was evaluated on the TWB, and the results showed that external mass transfer was the main determinant of response rate. It was also found that the adsorption process was endothermic and spontaneous. The system was optimized using the Box-Behnken design (BBD) methodology. The achieved removal capacity of 1119.19 mg/g utilizing the tested adsorbent was determined to be reasonable when compared to the performance of other previously used adsorbents when evaluating the effectiveness of eliminating LEV. The process of LEV adsorption onto TWB involves a number of different mechanisms, such as ion exchange, π-π interactions, electrostatic pore filling, and hydrogen bonding. Following extensive testing in connection with a real-world sample, the adsorbent demonstrated remarkable efficacy, and it maintained good performance even after undergoing three further regeneration cycles. By adjusting the annealing temperature, we controlled the synthesis of TWB nanoparticles across a range of sizes in order to maximize their antibacterial capabilities. This research utilized a pair of Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and a pair of Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) to evaluate the antibacterial efficacy of TWB.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mona Alhasani
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nada Alkhathami
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Khulood A Abu Al-Ola
- Department of Chemistry, College of Science, Taibah University, Al-Madinah, Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - M G El-Desouky
- Egyptian Propylene and Polypropylene Company, Port Said, Egypt
| | - A A El-Bindary
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|
3
|
Pimentel-Almeida W, Testolin RC, Gaspareto P, Gerlach OMS, Pereira-Filho J, Sanches-Simões E, Corrêa AXR, Almerindo GI, González SYG, Somensi CA, Radetski CM. Degradation of cytostatics methotrexate and cytarabine through physico-chemical and advanced oxidative processes: influence of pH and combined processes on the treatment efficiency. ENVIRONMENTAL TECHNOLOGY 2024; 45:4053-4061. [PMID: 37482803 DOI: 10.1080/09593330.2023.2240488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/30/2023] [Indexed: 07/25/2023]
Abstract
Environmental release of wastewater that contains cytostatic drugs can cause genotoxic impact, since these drugs act directly on the genetic material of aquatic organisms. Thus, the aim of this study was to evaluate the removal of the cytostatic drugs cytarabine (CTR) and methotrexate (MTX) using different physico-chemical methods individually (i.e. US, O3, H2O2 and UV) and combined (i.e. O3/US, US/H2O2, O3/H2O2 and O3/US/H2O2) under different pH conditions (4, 7 and 10). In the degradation tests, the efficiency of the methods applied was found to be dependent on the pH of the solution, with the degradation of CTR being better at pH 4 and MTX at pH 7 and pH 10. The US, H2O2 and US + H2O2 methods were the least efficient in degrading CTR and MTX under the pH conditions tested. The highest MTX degradation rate after 16 min of treatment at pH 7 was achieved by the O3 + H2O2 method (97.05% - C/C0 = 0.0295). For CTR, the highest degradation rate after 16 min of treatment was achieved by the O3 process (99.70% - C/C0 = 0.0030) at pH 4. In conclusion, most of the treatment methods tested for the degradation of CTR and MTX are effective. Notably, ozonolysis is an efficient process applied alone. Also, in combination with other methods (US + O3, O3 + H2O2 and O3 + H2O2 + US) it increases the degradation performance, showing a rapid removal rate of 70-94% in less than 4 min of treatment.
Collapse
Affiliation(s)
- Wendell Pimentel-Almeida
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Renan C Testolin
- Laboratório de Remediação Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Patrick Gaspareto
- Universidade Federal de Santa Catarina, Hospital Universitário, Florianópolis, Brazil
| | - Otto M S Gerlach
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Jurandir Pereira-Filho
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Eric Sanches-Simões
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Albertina X R Corrêa
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Gizelle I Almerindo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Sergio Y G González
- Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Cleder A Somensi
- Instituto Federal Catarinense - Campus Araquari, Araquari, Brazil
| | - Claudemir M Radetski
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| |
Collapse
|
4
|
Wang M, Mu L, Tang X, Fan W, Liu Q, Qiu C, Hu X. Effect and mechanism of coexistence of microplastics on arsenate adsorption capacity in water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116600. [PMID: 38896901 DOI: 10.1016/j.ecoenv.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Arsenic pollution control technology in water was important to ensure environmental health and quality safety of agricultural products. Therefore, the adsorption performance of three adsorbents for chitosan, sepiolite, and Zeolitic Imidazolate Framework-8 (ZIF-8) were investigated in arsenate contaminated water. The results revealed that the adsorption capacity of ZIF-8 was higher than that of chitosan and sepiolite. The analysis of adsorption isotherm models showed that the behavior of ZIF-8 was more consistent with the Langmuir model. Furthermore, the adsorption mechanisms of three adsorbents for arsenate were investigated by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The analysis of FTIR showed that ZIF-8 maintained the stability of the interaction with arsenate by forming As-O chemical bonds. However, the effect of chitosan and sepiolite with arsenate was mainly physical adsorption. The analysis of XPS showed that the absorption of ZIF-8 with arsenate involved metal sites and nitrogen through the characteristic peak and the change of the binding energy. Furthermore, the impact of microplastics as a widespread coexistence pollutant in the water on adsorbent performance was investigated. The results indicated that the adsorption capacity of ZIF-8 was almost not affected by microplastics. The maximum adsorption amount of arsenate was changed from 73.45 mg/g to 81.89 mg/g. However, the maximum adsorption amount of chitosan and sepiolite decreased by 31.4 % and 11.6 %, respectively. The analysis of FTIR and XPS revealed that ZIF-8 enhances arsenate adsorption by forming N-O-As bonds in the presence of microplastics. This study provides scientific evidence for the management of arsenate pollution in water bodies, especially in complex water bodies containing microplastics.
Collapse
Affiliation(s)
- Mengyuan Wang
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xin Tang
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Weixin Fan
- Tianjin Key Laboratory of Aqueous Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Qinghong Liu
- Tianjin Key Laboratory of Aqueous Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Chunsheng Qiu
- Tianjin Key Laboratory of Aqueous Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Komby Abdulla N, Alzahrani EA, Dwivedi P, Goel S, Hafeez S, Khulbe M, Ilahi Siddiqui S, Oh S. MnO 2 decoration onto the guava leaves: A sustainable and cost-effective material for methylene blue dye removal. Heliyon 2024; 10:e34267. [PMID: 39149003 PMCID: PMC11325273 DOI: 10.1016/j.heliyon.2024.e34267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 08/17/2024] Open
Abstract
Excessive number of dyes in water is becoming the main cause of water pollution, which is very important to remove because it is harmful. Dye contaminated water is being treated by various methods. Adsorption method can be considered best for the study of dye removal due to several technological reasons. The adsorption method has also been emphasized in this study. In the present work, a nano-bio-composite was fabricated by growing manganese oxide nanoparticles on abundant cellulosic guava leaf powder. This allows nanocomposite to be prepared in large quantities at nominal cost. The characterization technique confirmed the irregular growth of manganese oxide nanoparticles onto the guava leaf powder. The electrostatic and non-electrostatic interactions was confirmed in between manganese oxide nanoparticles and the carbon structure of guava leaf powder. The massive functional groups were found to be in the prepared nano-bio-composite. The grain size of prepared material was in nano range. The developed nano-bio-composite was used to remove methylene blue from water. This showed a very good adsorptive capacity for methylene blue. The analyzed adsorption data was modelled through isotherms, kinetics and thermodynamics models. The nature of the adsorption process was determined to be spontaneous and exothermic. The reusability test was carried out for five adsorption-desorption cycles. The reusability results suggested the better removal efficiency (%) in the first two cycles with only 20 % reduction in removal efficiency (%). The leaching test result revealed the good stability of MnO2/GL at neutral pH. It was a unique and cheap adsorbent of its kind, which had not been noticed anywhere before.
Collapse
Affiliation(s)
| | - Elham A Alzahrani
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Poonam Dwivedi
- Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India
| | - Shruti Goel
- Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India
| | - Sumbul Hafeez
- Department of Civil and Environmental Engineering, Villanova University, 800 E, Lancaster Ave, Villanova, PA, 19085, USA
| | - Mihir Khulbe
- Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, South Korea
| |
Collapse
|
6
|
Shaha CK, Mahmud MAA, Saha S, Karmaker S, Saha TK. Efficient removal of sparfloxacin antibiotic from water using sulfonated graphene oxide: Kinetics, thermodynamics, and environmental implications. Heliyon 2024; 10:e33644. [PMID: 39040378 PMCID: PMC11261116 DOI: 10.1016/j.heliyon.2024.e33644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Pharmaceutical contamination poses a significant threat to global health. Due to their high solubility in water, antibiotics are difficult to remove. This study produced and used sulfonated graphene oxide (SGO) to adsorb sparfloxacin from aquatic environments. UV-Visible, Fourier transform infrared (FTIR), X-ray diffraction (XRD), XPS, SEM, TEM, EDX, particle size, Thermogravimetric analysis (TGA), and acid-base titration were used to characterize synthesized SGO particles. The BET technique determined SGO's surface area (32.25 m2/g). The calculated pHPZC of SGO was 2.5. Sparfloxacin adsorption onto SGO was analyzed using adsorption duration, medium pH, adsorbent dosages, antibiotic concentration, cations, and solution temperature. The pseudo-second-order kinetic model better described experimental kinetic data than the pseudo-first-order and Elovich models. Equilibrium isotherm data supported the Langmuir model, revealing a peak absorption capacity of 1428.57 μmol/g at 25 °C. The kinetic and isotherm models' applicability was assessed using error analysis. A thermodynamic analysis revealed an endothermic, spontaneous adsorption process with a change in entropy (ΔS) of 114.15 J/mol K and enthalpy (ΔH) of 8.44 kJ/mol. A regeneration analysis showed that SGO adsorption efficiency topped 86.4 % after five cycles.
Collapse
Affiliation(s)
- Chironjit Kumar Shaha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment (AERE), Gonokbari, Savar, Dhaka 1349, Bangladesh
| | | | - Sudipta Saha
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Subarna Karmaker
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tapan Kumar Saha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
7
|
Alaysuy O, Aljohani MM, Alkhamis K, Alatawi NM, Almotairy AR, Abu Al-Ola KA, Khder AS, El-Metwaly NM. Synthesis, characterization and adsorption optimization of bimetallic La-Zn metal organic framework for removal of 2,4-dichlorophenylacetic acid. Heliyon 2024; 10:e28622. [PMID: 38689963 PMCID: PMC11059553 DOI: 10.1016/j.heliyon.2024.e28622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
To eliminate the hazardous pesticide 2,4-dichlorophenylacetic acid (2,4-D) through aqueous solutions, stacked nanorods known as hetero bimetallic organic frameworks (MOFs) of 2-methyl imidazole based on lanthanum and zinc are created. The research's convincing discoveries displayed that La/Zn-MOF is an actual adsorbent for the removal of 2,4-D through aqueous solutions. The La/Zn-MOF was investigated using a variability of techniques, with scanning electron microscope (SEM), powered X-ray diffraction (PXRD), and Brunauer-Emmett-Teller (BET) investigation. La/Zn-MOF has a significant pore capacity of 1.04 cm³/g and a comparatively large surface area of 897.69 m2/g. Our findings, which are quite intriguing, demonstrate that adsorption behavior is pointedly wedged by variations in pH. A pH 6 dose of 0.02 g was shown to be the optimal setting for the greatest capacity for adsorption. Because adsorption is an endothermic process, temperature variations affect its capability. The adsorption method was fit both isothermally and kinetically using the Langmuir isotherm classical. It was created that the entire process made use of a chemisorption mechanism. Solution pH, temperature, adsorbent dosage, and time were all improved using the Box-Behnken design (BBD) and Response Surface Methodology (RSM). We were able to accurately calculate the values of ΔHo, ΔSo, and ΔGo for 2,4-D by following the guidelines. These results demonstrated the spontaneous and endothermic character of the adsorption procedure employing La/Zn-MOF as an adsorbent. Adsorption-desorption cycles can be carried out up to five times. With the synthesized La/Zn-MOF adsorbent due to its exceptional reusability. Many processes, such π-π interaction, pore filling, H-bonding, or electrostatic contact, were postulated to explain the connection between La/Zn-MOF and 2,4-D after extra research to appreciate well the link was conducted. This is the first study to demonstrate the effectiveness of utilizing La/Zn-MOF as an adsorbent to eliminate 2,4-D from wastewater models. The results display that a pH of 6 is required to achieve the maximal 2,4-D adsorption capability on La/Zn-MOF, which is 307.5 mg/g.
Collapse
Affiliation(s)
- Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk, 71474, Tabuk, Saudi Arabia
| | - Meshari M. Aljohani
- Department of Chemistry, College of Science, University of Tabuk, 71474, Tabuk, Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science, University of Tabuk, 71474, Tabuk, Saudi Arabia
| | - Nada M. Alatawi
- Department of Chemistry, College of Science, University of Tabuk, 71474, Tabuk, Saudi Arabia
| | - Awatif R.Z. Almotairy
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu, 30799, Saudi Arabia
| | - Khulood A. Abu Al-Ola
- Department of Chemistry, College of Science, Taibah University, 30002, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Abdelrahman S. Khder
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street 35516, Egypt
| | - Nashwa M. El-Metwaly
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street 35516, Egypt
| |
Collapse
|
8
|
Alshammari BH, Alanazi KD, Ahmad OAS, Sallam S, Al-Bagawi AH, Alsehli AH, Alshammari BM, El-Metwaly NM. Tailoring magnetic Sn-MOFs for efficient amoxicillin antibiotic removal through process optimization. RSC Adv 2024; 14:5875-5892. [PMID: 38362066 PMCID: PMC10865462 DOI: 10.1039/d3ra08676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
This study investigated the efficacy of magnetic Sn metal-organic frameworks (MSn-MOFs) in removing the insecticide amoxicillin (AMX) from aqueous solutions. Our thorough experimental investigation showed that MSn-MOFs were an incredibly effective adsorbent for removing AMX. Several methods were used to characterize the material. BET investigation of the data displayed a significant surface area of 880 m2 g-1 and a strong magnetic force of 89.26 emu g-1. To identify the point of zero charge, surface characterization was carried out and the value was 7.5. This shows that the adsorbent carries a positive and negative charge below and above this position, respectively. Moreover, the impact of pH on adsorption equilibrium was explored. The results of kinetic models to explore the adsorption of AMX on MSn-MOFs supported the pseudo-second-order, and the adsorption complied well with the Langmuir isotherm. The results revealed that the overall adsorption mechanism may entail chemisorption via an endothermic spontaneous process with MSn-MOFs. The precise modes by which MSn-MOFs and AMX interacted may involve pore filling, H-bonding, π-π interaction, or electrostatic interaction. Determining the nature of this interaction is essential in understanding the adsorption behavior of the MOFs and optimize the adsorbent design for real-world applications. The use of the MSn-MOF adsorbent provides a straightforward yet efficient method for the filtration of water and treatment of industrial effluents. The results showed 2.75 mmol g-1 as the maximum capacity for adsorption at pH = 6. Additional tests were conducted to assess the adsorbent regeneration, and even after more than six cycles, the results demonstrated a high level of efficiency. The adsorption results were enhanced by the application of the Box-Behnken design.
Collapse
Affiliation(s)
- Basmah H Alshammari
- Department of Chemistry, College of Science, University of Ha'il 81442 Ha'il KSA
| | - Kaseb D Alanazi
- Department of Chemistry, College of Science, University of Ha'il 81442 Ha'il KSA
| | - Omar A Sheej Ahmad
- Department of Chemistry, College of Education for Pure Sciences, University of Mosul Iraq
| | - Sahar Sallam
- Department of Chemistry, Faculty of Science, Jazan University Jazan P. O. 45142 Saudi Arabia
| | - Amal H Al-Bagawi
- Department of Chemistry, College of Science, University of Ha'il 81442 Ha'il KSA
| | - Amal H Alsehli
- Chemistry Department, College of Science, Taibah University Madinah 42353 KSA
| | - Bandar M Alshammari
- Department of Chemistry, College of Science, University of Ha'il 81442 Ha'il KSA
| | - Nashwa M El-Metwaly
- Department of Chemistry, Collage of Sciences, Umm Al-Qura University Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University El-Gomhoria Street 35516 Egypt
| |
Collapse
|
9
|
Al-Ahmed ZA, Alhasani M, Aljohani MM, Snari RM, Alghasham HA, Alatawi NM, Keshk AA, El-Metwaly NM. Facile synthesis of new metal-organic framework/chitosan composite sponge for Hg(II) removal: Characterization, adsorption efficiency, and optimization using Box-Behnken design. Int J Biol Macromol 2024; 259:129282. [PMID: 38199550 DOI: 10.1016/j.ijbiomac.2024.129282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The objective of this research was to develop a novel adsorbent to eliminate mercury (Hg(II)) from water. A unique citrate-crosslinked La-MOF/citrate crosslinked chitosan composite sponge (La-MOF@CSC composite sponge) was successfully synthesized in an acidic environment using a one-step technique. Modifying the composition of adsorbent materials is a commonly employed strategy to enhance adsorption capacity, particularly for materials composed of metal-organic frameworks. The study investigated the impact of the composite sponge on the adsorption and removal of Hg(II). The composite sponge exhibited a maximum adsorption capacity (qmax) for Hg(II) at 765.22 mg/g and an impressive high surface area of 1208 m2/g. Various factors influencing the adsorption capacity were taken into account in this study. The adsorption isotherm and kinetics were modeled using Langmuir and pseudo-second-order equations, respectively. Consistent with thermodynamics, the adsorption process was identified as spontaneous and endothermic. The quantities of adsorbed substances increased with rising temperature. The La-MOF@CSC composite sponge demonstrated the ability to be reused up to five times with satisfactory efficiency, retaining its chemical composition and exhibiting similar XRD and XPS data before and after each reuse. The interaction between heavy metals and the La-MOF/CSC composite sponge was examined. Optimization of the adsorption outcomes was conducted using the Box-Behnken design (BBD).
Collapse
Affiliation(s)
- Zehbah A Al-Ahmed
- Department of Chemistry, College of sciences and art, Dhahran Aljounb, King Khalid University, Saudi Arabia
| | - Mona Alhasani
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Meshari M Aljohani
- Department of Chemistry, College of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Razan M Snari
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hawra A Alghasham
- Department of Physics, faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nada M Alatawi
- Department of Chemistry, College of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Ali A Keshk
- Department of Chemistry, College of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street 35516, Egypt.
| |
Collapse
|
10
|
Devre PV, Gore AH. Agro-Waste Valorization into Carbonaceous Eco-Hydrogel: A Circular Economy and Zero Waste Tactic for Doxorubicin Removal in Water/Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:141-158. [PMID: 38113477 DOI: 10.1021/acs.langmuir.3c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The existing work aims to evaluate the efficiency of eco-hydrogel for adsorption of pollutants prepared from biopolymeric matrix and agricultural waste-derived biochar. An efficient and reusable adsorbent, designed from the integration of maize stalk activated carbon into a gelatin-alginate composite (MSAC@GE-SA) was explored for removal of doxorubicin hydrochloride (Doxo.HCL) from polluted water. The structural properties, presence of surface functional groups, and elemental composition were explored using XRD, SEM, BET, FTIR, and XPS techniques. The key adsorption parameters such as Doxo.HCL concentration, MSAC@GE-SA amount, solution pH, and the contact time between adsorbate and adsorbents were successfully optimized for the effective removal of Doxo.HCL (qmax = 239.41 mg g-1). The kinetic mechanism of MSAC@GE-SA fits well with a pseudo-second-order rate model (R2 = 0.980), followed by mono- and multilayered Langmuir and Freundlich isotherms with R2 values 0.991 and 0.993, respectively. The recyclability of MSAC@GE-SA showed great stability without any physical damage and having sustained removal efficiency up to 10 cycles (96.32 to 55.66%). The versatility of MSAC@GE-SA was further investigated for river, canal, and sewage water samples under identical experimental conditions. The practicality of the MSAC@GE-SA was evaluated by spiking Doxo.HCL into industrial effluents via the standard addition method. Subsequently, the chemical oxygen demand (COD) of the treated pollutants exhibited a notable reduction, decreasing significantly from 128 to 80 mg L-1. Following 10 successful adsorption-desorption cycles, the spent MSAC@GE-SA was utilized as a fertilizer for Vigna radiata plants, positively contributing to overall plant growth without causing harm. Hence, proposed adsorbent (MSAC@GE-SA) emerges as a viable and sustainable solution, demonstrating features of reusability and cost-effectiveness. It holds significant promise for the removal of pharmaceutical pollutants, aligning with the principles of circular economy and zero-waste tactics.
Collapse
Affiliation(s)
- Pooja V Devre
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi-394350 Surat, Gujarat, India
| | - Anil H Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi-394350 Surat, Gujarat, India
| |
Collapse
|
11
|
Alkhatib F, Ibarhiam SF, Alrefaei AF, Alrefaee SH, Pashameah R, Habeebullah TM, Al-Qahtani SD, El-Metwaly NM. Efficient Removal of Deltamethrin from Aqueous Solutions Using a Novel Lanthanum Metal-Organic Framework: Adsorption Models and Optimization via Box-Behnken Design. ACS OMEGA 2023; 8:32130-32145. [PMID: 37692223 PMCID: PMC10483662 DOI: 10.1021/acsomega.3c04481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
Eliminating pesticides is essential for lowering the dangers to our environment. To do this effectively, it is crucial to find adsorbents with remarkable adsorption capacities, easy retrieval, and separation. Metal-organic frameworks (MOFs) have been extensively recognized for their exceptional ability to absorb pollutants. Therefore, we used novel lanthanum metal-organic frameworks (La-MOFs) to eliminate deltamethrin (DEL) from aqueous solutions. We proved through experimentation that the La-MOF is an efficient adsorbent for DEL from water. A study of the material revealed that the adsorbent had a surface area of 952.96 m2 per gram and a pore volume of 1.038 cm3/g. These outcomes show how this substance can absorb particles. Utilizing kinetic models and conforming to the pseudo-second-order model, a thorough analysis of the efficiency of DEL adsorption onto La-MOF was conducted. To create a perfectly tailored approach, we utilized many parameters. The synthetic La-MOF adsorbent may undergo up to five steps of adsorption-desorption and has exceptional cyclability and reusability. To confirm purifying wastewater samples in the laboratory, the presentation of the established adsorbent was evaluated. For the management of industrial effluent and water filtration, the La-MOF adsorbent offered a simple and effective solution. Our investigation suggests that the method we describe for removing DEL from wastewater samples using the La-MOF adsorbent is unique.
Collapse
Affiliation(s)
- Fatmah Alkhatib
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Saham F. Ibarhiam
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Abdulmajeed F. Alrefaei
- Department
of Biology/Genetic and Molecular Biology Central Laboratory (GMCL), Jamoum University College, Umm Al-Qura University, Makkah 2203, Saudi Arabia
| | - Salhah H. Alrefaee
- Department
of Chemistry, Faculty of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Rami Pashameah
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Turki M. Habeebullah
- Department
of Environment and Health Research, Custodian of Two Holy Mosques
Institute for Hajj and Umrah Research, Umm
Al Qura University, Makkah 21955, Saudi Arabia
| | - Salhah D. Al-Qahtani
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
Alkhamis K, Aljohani MM, Ibarhiam SF, Hameed YAS, Abumelha HM, Habeebullah TM, El-Metwaly NM. Application of Metal-Organic Frameworks for Efficient Removal of Doxorubicin Hydrochloride: Removal Process Optimization and Biological Activity. ACS OMEGA 2023; 8:30374-30388. [PMID: 37636940 PMCID: PMC10448695 DOI: 10.1021/acsomega.3c03523] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
This study looked at the doxorubicin hydrochloride (DOX) anticancer drug's adsorption characteristics on a silver-based metal-organic framework (Ag-MOF). X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used for the characterization of Ag-MOF. The pore volume and surface area of Ag-MOF were determined through Brunauer-Emmett-Teller (BET) testing at 77 K to be 0.509 cm3/g and 676.059 m2/g, respectively. Adsorption at pH 6 was established to be the best for DOX compared to alkaline solution. Ag-MOF has a good capacity for eliminating DOX (1.85 mmol/g), according to adsorption experiments. From the adsorption results, we can find that Langmuir is the most fitted adsorption isotherm model and the pseudo-second order model best fitted the adsorption kinetics. The energy of activation for adsorption, which was determined to be 15.23 kJ/mol, also supported a chemisorption process. The mechanism of adsorption was evaluated, and details of all possible interactions between DOX and Ag-MOF were illustrated. On the other hand, while examining the impact of temperature, we identified the thermodynamic constraints as ΔG°, ΔH°, and ΔS° and confirmed that the reaction was an endothermic one and spontaneous. Even after numerous reuse cycles, the efficiency remained constant. The synthetic adsorbent was remarkably recyclable at a rate of more than 91.6%. By using the MTT assay, the cytotoxicity of the tested Ag-MOF and DOX@Ag-MOF against human breast cancer cells (MCF-7) was evaluated in vitro. The in vitro antimicrobial activity of Ag-MOF and DOX@Ag-MOF was also tested.
Collapse
Affiliation(s)
- Kholood
M. Alkhamis
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 71474, Saudi Arabia
| | - Meshari M. Aljohani
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 71474, Saudi Arabia
| | - Saham F. Ibarhiam
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 71474, Saudi Arabia
| | - Yasmeen A. S. Hameed
- Department
of Chemistry, Faculty of Science, Northern
Border University, Arar 73222, Saudi Arabia
| | - Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Turki M. Habeebullah
- Department
of Environment and Health Research, The Custodian of Two Holy Mosques
Institute for Hajj and Umrah Research, Umm
Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
13
|
Alotaibi MT, Mogharbel RT, Alorabi AQ, Alamrani NA, Shahat A, El-Metwaly NM. Superior adsorption and removal of toxic industrial dyes using cubic Pm3n aluminosilica form an aqueous solution, Isotherm, Kinetic, thermodynamic and mechanism of interaction. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
14
|
Althumayri K, Guesmi A, Abd El-Fattah W, Khezami L, Soltani T, Hamadi NB, Shahat A. Effective Adsorption and Removal of Doxorubicin from Aqueous Solutions Using Mesostructured Silica Nanospheres: Box-Behnken Design Optimization and Adsorption Performance Evaluation. ACS OMEGA 2023; 8:14144-14159. [PMID: 37091426 PMCID: PMC10116628 DOI: 10.1021/acsomega.3c00829] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The aim of this study is to evaluate the efficacy of mesoporous silica nanospheres as an adsorbent to remove doxorubicin (DOX) from aqueous solution. The surface and structural properties of mesoporous silica nanospheres were investigated using BET, SEM, XRD, TEM, ζ potential, and point of zero charge analysis. To optimize DOX removal from aqueous solution, a Box-Behnken surface statistical design (BBD) with four times factors, four levels, and response surface modeling (RSM) was used. A high amount of adsorptivity from DOX (804.84 mg/g) was successfully done under the following conditions: mesoporous silica nanospheres dose = 0.02 g/25 mL; pH = 6; shaking speed = 200 rpm; and adsorption time = 100 min. The study of isotherms demonstrated how well the Langmuir equation and the experimental data matched. According to thermodynamic characteristics, the adsorption of DOX on mesoporous silica nanospheres was endothermic and spontaneous. The increase in solution temperature also aided in the removal of DOX. The kinetic study showed that the model suited the pseudo-second-order. The suggested adsorption method could recycle mesoporous silica nanospheres five times, with a modest reduction in its ability for adsorption. The most important feature of our adsorbent is that it can be recycled five times without losing its efficiency.
Collapse
Affiliation(s)
- Khalid Althumayri
- Department
of Chemistry, College of Science, Taibah
University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahlem Guesmi
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Wesam Abd El-Fattah
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Port Said
University, Port Said 43518, Egypt
| | - Lotfi Khezami
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Taoufik Soltani
- Physics
Laboratory of Soft Matter and Electromagnetic Modelling, Faculty of
Sciences of Tunis, University of Tunis El
Manar, Tunis 1068, Tunisia
| | - Naoufel Ben Hamadi
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Laboratory
of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39),
Faculty of Science of Monastir, UM (University
of Monastir), Avenue
of Environment, Monastir 5019, Tunisia
| | - Ahmed Shahat
- Department
of Chemistry, Faculty of Science, Suez University, Suez 8151650, Egypt
| |
Collapse
|
15
|
Cai W, Ye Y, Weng X, Owens G, Chen Z. Mechanistic insight into loading of doxorubicin hydrochloride onto carbonized FeNPs@ZIF-8 composite. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
16
|
Subaihi A, Shahat A. Synthesis and characterization of super high surface area silica-based nanoparticles for adsorption and removal of toxic pharmaceuticals from aqueous solution. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
17
|
Alkhathami ND, Alamrani NA, Hameed A, Al-Qahtani SD, Shah R, El-Metwaly NM. Adsorption of pharmaceutical ibuprofen over functionalized zirconium metal-organic frameworks; Batch experiment and mechanism of interaction. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
18
|
M El-Metwaly N, A Katouah H, El-Desouky MG, El-Bindary AA, El-Bindary MA. Fabricating of Fe 3O 4@Ag-MOF nanocomposite and evaluating its adsorption activity for removal of doxorubicin. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:1099-1115. [PMID: 36537029 DOI: 10.1080/10934529.2022.2156230] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this research was to investigate the doxorubicin (DOX) adsorption behavior on Fe3O4@Ag-Metal Organic Framework (Fe3O4@Ag-MOF). This adsorbent was effectively prepared using a simple synthetic process. Many instruments, including FTIR, XRD, SEM, TEM, and XPS, were used to characterized the new Fe3O4@Ag-MOF. Additionally, the presented Fe3O4@Ag-surface MOF's area was shown to be 586.06 m2/g with a size of around 43 nm. The composite that was made has magnetic properties that were quite strong (63.3 emu/g). The produced Fe3O4@Ag-MOF was discovered to have a fantastic ability to adsorb the anti-cancer drug DOX, with a 1.72 mmol/g (934.85 mg/g) adsorption capacity. On the basis of changes in temperature, pH, and DOX concentration, the DOX adsorption behavior mechanism was investigated. The adsorption capacity of Fe3O4@Ag-MOF for DOX was greater at pH 7.0, according to experimental data. The adsorption equilibrium also demonstrated that the Langmuir adsorption was regulated the best fit to the extracted data compared with the other models. Additionally, the activation energy of adsorption for DOX onto Fe3O4@Ag-MOF was determined, indicating the chemisorption process. The adsorption kinetics was shown in the well-known kinetic model of the pseudo-second-order. The adsorption thermodynamic measurements were documented according to according to the enthalpy (ΔH°), entropy(ΔS°), and Gibbs free energy (ΔG°) parameters demonstrated that the reaction was endothermic and spontaneous thermodynamic. The adsorption of DOX onto Fe3O4@Ag-MOF from real water samples (tap water, effluent wastewater, and influence wastewater) were investigated. It's interesting that the synthetic adsorbent had great recyclability 72.6 percent in the fifth cycle indicating that it was highly recyclable. After adsorption, the typical Fe3O4@Ag-MOF XRD peak intensities and locations were mostly unchanged throughout adsorption indicates the crystalline phase remained steady. The results indicated that Fe3O4@Ag-MOF were a good candidate for adsorbing the DOX and treating wastewater.
Collapse
Affiliation(s)
- N M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - H A Katouah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - M G El-Desouky
- Egyptian Propylene and Polypropylene Company, Port Said, Egypt
| | - A A El-Bindary
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - M A El-Bindary
- Basic Science Department, Higher Institute of Engineering and Technology, New Damietta, Egypt
| |
Collapse
|