1
|
Zhao S, Li LL, Wang YJ, Liu ZW, Yang S, Gao X, Zhang CY, Yu AF. Remediation of petroleum-contaminated site soil by bioaugmentation with immobilized bacterial pellets stimulated by a controlled-release oxygen composite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124253. [PMID: 38851378 DOI: 10.1016/j.envpol.2024.124253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Bioaugmentation techniques still show drawbacks in the cleanup of total petroleum hydrocarbons (TPHs) from petroleum-contaminated site soil. Herein, this study explored high-performance immobilized bacterial pellets (IBPs) embed Microbacterium oxydans with a high degrading capacity, and developed a controlled-release oxygen composite (CROC) that allows the efficient, long-term release of oxygen. Tests with four different microcosm incubations were performed to assess the effects of IBPs and CROC on the removal of TPHs from petroleum-contaminated site soil. The results showed that the addition of IBPs and/or CROC could significantly promote the remediation of TPHs in soil. A CROC only played a significant role in the degradation of TPHs in deep soil. The combined application of IBPs and CROC had the best effect on the remediation of deep soil, and the removal rate of TPHs reached 70%, which was much higher than that of nature attenuation (13.2%) and IBPs (43.0%) or CROC (31.9%) alone. In particular, the CROC could better promote the degradation of heavy distillate hydrocarbons (HFAs) in deep soil, and the degradation rates of HFAs increased from 6.6% to 33.2%-21.0% and 67.9%, respectively. In addition, the IBPs and CROC significantly enhanced the activity of dehydrogenase, catalase, and lipase in soil. Results of the enzyme activity were the same as that of TPH degradation. The combined application of IBPs and CROC not only increased the microbial abundance and diversity of soil, but also significantly enhanced the enrichment of potential TPH-biodegrading bacteria. M. oxydans was dominant in AP (bioaugmentation with addition of IBPs) and APO (bioaugmentation with the addition of IBPs and CROC) microcosms that added IBPs. Overall, the IBPs and CROC developed in this study provide a novel option for the combination of bioaugmentation and biostimulation for remediating organic pollutants in soil.
Collapse
Affiliation(s)
- Sheng Zhao
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, PR China
| | - Ling-Ling Li
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, PR China
| | - Yue-Jie Wang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, PR China.
| | - Zheng-Wei Liu
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, PR China
| | - Shuai Yang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, PR China
| | - Xiang Gao
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, PR China
| | - Chang-Yun Zhang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, PR China
| | - An-Feng Yu
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, PR China
| |
Collapse
|
2
|
Benning S, Pritsch K, Radl V, Siani R, Wang Z, Schloter M. (Pan)genomic analysis of two Rhodococcus isolates and their role in phenolic compound degradation. Microbiol Spectr 2024; 12:e0378323. [PMID: 38376357 PMCID: PMC10986565 DOI: 10.1128/spectrum.03783-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
The genus Rhodococcus is recognized for its potential to degrade a large range of aromatic substances, including plant-derived phenolic compounds. We used comparative genomics in the context of the broader Rhodococcus pan-genome to study genomic traits of two newly described Rhodococcus strains (type-strain Rhodococcus pseudokoreensis R79T and Rhodococcus koreensis R85) isolated from apple rhizosphere. Of particular interest was their ability to degrade phenolic compounds as part of an integrated approach to treat apple replant disease (ARD) syndrome. The pan-genome of the genus Rhodococcus based on 109 high-quality genomes was open with a small core (1.3%) consisting of genes assigned to basic cell functioning. The range of genome sizes in Rhodococcus was high, from 3.7 to 10.9 Mbp. Genomes from host-associated strains were generally smaller compared to environmental isolates which were characterized by exceptionally large genome sizes. Due to large genomic differences, we propose the reclassification of distinct groups of rhodococci like the Rhodococcus equi cluster to new genera. Taxonomic species affiliation was the most important factor in predicting genetic content and clustering of the genomes. Additionally, we found genes that discriminated between the strains based on habitat. All members of the genus Rhodococcus had at least one gene involved in the pathway for the degradation of benzoate, while biphenyl degradation was mainly restricted to strains in close phylogenetic relationships with our isolates. The ~40% of genes still unclassified in larger Rhodococcus genomes, particularly those of environmental isolates, need more research to explore the metabolic potential of this genus.IMPORTANCERhodococcus is a diverse, metabolically powerful genus, with high potential to adapt to different habitats due to the linear plasmids and large genome sizes. The analysis of its pan-genome allowed us to separate host-associated from environmental strains, supporting taxonomic reclassification. It was shown which genes contribute to the differentiation of the genomes based on habitat, which can possibly be used for targeted isolation and screening for desired traits. With respect to apple replant disease (ARD), our isolates showed genome traits that suggest potential for application in reducing plant-derived phenolic substances in soil, which makes them good candidates for further testing against ARD.
Collapse
Affiliation(s)
- Sarah Benning
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Karin Pritsch
- Research Unit for Environmental Simulations, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Viviane Radl
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Roberto Siani
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Zhongjie Wang
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Environmental Microbiology, TUM School of Life Sciences, Technical University Munich, Munich, Germany
| |
Collapse
|