1
|
Němcová K, Lhotský O, Stavělová M, Komárek M, Semerád J, Filipová A, Najmanová P, Cajthaml T. Effects of different organic substrate compositions on the decontamination of aged PAH-polluted soils through outdoor co-composting. CHEMOSPHERE 2024; 362:142580. [PMID: 38866336 DOI: 10.1016/j.chemosphere.2024.142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/25/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
The effects of different organic substrate compositions on the efficiency of outdoor co-composting as a bioremediation technology for decontaminating soil polluted by polycyclic aromatic hydrocarbons (PAHs) were investigated. Four different substrate mixtures and two different aged PAH-contaminated soils were used in a semi-pilot-scale experiment that lasted nearly 700 days. The two soils (A and B) differed concerning both the initial concentrations of the Ʃ16 US EPA PAHs (5926 vs. 369 mg kg-1, respectively) and the type of predominant PAH group by molecular weight. The experiments revealed that while the composition of the organic substrate had an impact on the rate of PAH degradation, it did not significantly influence the final extent of PAH degradation. Notably, the organic substrate consisting of green waste and wood chips (GW) was found to facilitate the most rapid rate of PAH degradation (first-order rate constant k = 0.033 ± 0.000 d-1 with soil A over the initial 42 days of the experiment and k = 0.036 ± 0.000 d-1 with soil B over the initial 56 days). Despite the differences in organic substrate compositions and types of soil being treated, PAH degradation levels exceeded at least 95% in all the treatments after more than 680 days of co-composting. Regardless of the composition, the removal of low- and medium- molecular-weight (2-4 rings) PAHs was nearly complete by the end of the experiment. Furthermore, high-molecular-weight PAHs (5 rings and more) were significantly degraded during co-composting, with reductions ranging from 54% to 79% in soil A and from 59% to 68% in soil B. All composts were dominated by Proteobacteria, Firmicutes, and Actinobacteria, with significant differences in abundance between soils. Genera with PAH degradation potentials were detected in all samples. The results of a battery of toxicity tests showed that there was almost no toxicity associated with the final composts.
Collapse
Affiliation(s)
- Kateřina Němcová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Ondřej Lhotský
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Dekonta, a.s., Dřetovice 109, CZ-273 42, Stehelčeves, Czech Republic
| | - Monika Stavělová
- AECOM CZ s.r.o., Trojská 92, CZ-171 00, Prague 7, Czech Republic
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague - Suchdol, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Alena Filipová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Petra Najmanová
- Dekonta, a.s., Dřetovice 109, CZ-273 42, Stehelčeves, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic.
| |
Collapse
|
2
|
Zainab R, Hasnain M, Ali F, Dias DA, El-Keblawy A, Abideen Z. Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104933-104957. [PMID: 37718363 DOI: 10.1007/s11356-023-29801-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Daniel Anthony Dias
- CASS Food Research Centre, School of Exercise and Nutrition Sciences Deakin University, Melbourne, VIC, 3125, Australia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE.
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
3
|
Influence of Organic Amendments and Moisture Regime on Soil CO2-C Efflux and Polycyclic Aromatic Hydrocarbons (PAHs) Degradation. SUSTAINABILITY 2022. [DOI: 10.3390/su14074116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a 30-day incubation experiment was performed to investigate the interactive effects of soil moisture content and two types of organic manure (animal manure: M and wheat straw: WS) on organic C mineralization and the degradation of PAH compounds. Specifically, washed sandy soil sample free from PAHs was treated with combined standard solution containing six different PAHs; pyrene (Pyr), fluoranthene (Flt), benzo[a]pyrene (BaP), benzo[g,h,i]perylene (BghiP), benzo[k]fluoranthene (BkF), and indeno[123-cd]pyrene (IP). The soil samples treated with PAHs were amended with M or WS and then, the soil samples were incubated and subjected to two levels of moisture content (50% and 100% field capacity, FC). The results indicate that CO2–C rates were the highest at day 1, but they tended to be decreased sharply when incubation time increased. The results showed that the higher rate of CO2-C efflux rate and cumulative were observed in M and WS treatments at 100% FC. Applying organic amendments at 50% FC increased the total cumulative CO2-C from 21.6 mg kg−1 to 228 mg kg−1 for M and to 216 mg kg−1 for WS. Meanwhile, applying organic amendments at 50% FC increased the total cumulative CO2-C from 30 mg kg−1 to 381 mg kg−1 for M and to 492 mg kg−1 for WS. The highest increases at 100% FC could be explained by the optimum water content at field capacity. PAHs concentrations decreased significantly in the presence of organic amendments in relation to enhance CO2-C efflux (soil respiration) and to decrease soil pH. It could be concluded that applying organic amendments might be a useful technique to remediate soil PAHs through mineralization.
Collapse
|
4
|
Haider FU, Ejaz M, Cheema SA, Khan MI, Zhao B, Liqun C, Salim MA, Naveed M, Khan N, Núñez-Delgado A, Mustafa A. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2021; 197:111031. [PMID: 33744268 DOI: 10.1016/j.envres.2021.111031] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Extraction and exploration of petroleum hydrocarbons (PHs) to satisfy the rising world population's fossil fuel demand is playing havoc with human beings and other life forms by contaminating the ecosystem, particularly the soil. In the current review, we highlighted the sources of PHs contamination, factors affecting the PHs accumulation in soil, mechanisms of uptake, translocation and potential toxic effects of PHs on plants. In plants, PHs reduce the seed germination andnutrients translocation, and induce oxidative stress, disturb the plant metabolic activity and inhibit the plant physiology and morphology that ultimately reduce plant yield. Moreover, the defense strategy in plants to mitigate the PHs toxicity and other potential remediation techniques, including the use of organic manure, compost, plant hormones, and biochar, and application of microbe-assisted remediation, and phytoremediation are also discussed in the current review. These remediation strategies not only help to remediate PHs pollutionin the soil rhizosphere but also enhance the morphological and physiological attributes of plant and results to improve crop yield under PHs contaminated soils. This review aims to provide significant information on ecological importance of PHs stress in various interdisciplinary investigations and critical remediation techniques to mitigate the contamination of PHs in agricultural soils.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | | | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 12 FL 32611, USA
| | - Avelino Núñez-Delgado
- Depart. Soil Sci. and Agric. Chem., Engineering Polytech. School, Lugo, Univ. Santiago de Compostela, Spain
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
5
|
Ligninolytic enzymes production during polycyclic aromatic hydrocarbons degradation: effect of soil pH, soil amendments and fungal co-cultivation. Biodegradation 2021; 32:193-215. [PMID: 33725325 DOI: 10.1007/s10532-021-09933-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
Soil microorganisms play an important role in the degradation of PAHs and use various metabolic pathways for this process. The effect of soil pH, different soil amendments and the co-cultivation of fungi on the degradation of PAHs in soil and on the activity of ligninolytic enzymes was evaluated. For that purpose, three fungi were studied: Trichoderma viride, Penicillium chrysogenum and Agrocybe aegerita. Biodegradation assays with a mixture of 200 ppm PAHs (fluorene, pyrene, chrysene, and benzo[a]pyrene-50 ppm each) were set up at room temperature for 8 weeks. The maximum laccase activity by solid state fermentation-SSF (7.43 U/g) was obtained by A. aegerita on kiwi peels with 2 weeks and the highest manganese peroxidase activity (7.21 U/g) was reached in 4 weeks, both at pH 7. Fluorene, pyrene, and benzo[a]pyrene achieved higher degradation rates in soil at pH 5, while chrysene was more degradable at pH 7. About 85-90% of the PAHs were degraded by fungal remediation. The highest degradation of fluorene was achieved by co-cultivation of A. aegerita and P. chrysogenum, remaining 14% undegradable. Around 13% of pyrene stay undegradable by A. aegerita and T. viride and by A. aegerita and P. chrysogenum, both systems supported in kiwi peels, while 11% of chrysene remained in soil by the co-cultivation of these fungi, supported by peanut shells. Regarding benzo[a]pyrene, 13% remained in soil after treatment with A. aegerita. Despite the increase in degradation of some PAHs with co-cultivation, higher enzyme production during degradation was observed when fungi were cultivated alone.
Collapse
|
6
|
Sayara T, Sarrà M, Sánchez A. Preliminary screening of co-substrates for bioremediation of pyrene-contaminated soil through composting. JOURNAL OF HAZARDOUS MATERIALS 2009; 172:1695-1698. [PMID: 19733431 DOI: 10.1016/j.jhazmat.2009.07.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/22/2009] [Accepted: 07/28/2009] [Indexed: 05/28/2023]
Abstract
The feasibility of using different organic amendments of different origin and properties in the bioremediation of pyrene-contaminated soil by means of composting has been tested. The selected pyrene concentration was 1g of pyrene per kg of dry soil. The organic amendments used include: raw organic fraction of municipal solid wastes (OFMSW), industrial compost from OFMSW composting (COFMSW), compost derived from home composting of OFMSW (HCOFMSW), anaerobically digested sludge (ADS), non-digested activated sludge (NDS) and centrifuged non-digested activated sludge (CNDS). The degradation rate was related to the amendment properties that directly affected the composting process. Raw OFMSW was not capable to enhance pyrene degradation in comparison to control, but stable HCOFMSW exhibited the highest removal rate (69%). The amendments stability and the temperatures reached as a consequence influenced the process, and thermophilic temperatures showed an inhibition effect on the microbial activity related to pyrene degradation. Some of the tested wastes need to be further investigated to find inexpensive organic amendments for soil bioremediation.
Collapse
Affiliation(s)
- Tahseen Sayara
- Department of Chemical Engineering, Edifici Q, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola, 08193 Barcelona, Spain
| | | | | |
Collapse
|
7
|
Sayara T, Sarrà M, Sánchez A. Optimization and enhancement of soil bioremediation by composting using the experimental design technique. Biodegradation 2009; 21:345-56. [PMID: 19882357 DOI: 10.1007/s10532-009-9305-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/21/2009] [Indexed: 11/26/2022]
Abstract
The objective of this study was the application of the experimental design technique to optimize the conditions for the bioremediation of contaminated soil by means of composting. A low-cost material such as compost from the Organic Fraction of Municipal Solid Waste as amendment and pyrene as model pollutant were used. The effect of three factors was considered: pollutant concentration (0.1-2 g/kg), soil:compost mixing ratio (1:0.5-1:2 w/w) and compost stability measured as respiration index (0.78, 2.69 and 4.52 mg O2 g(-1) Organic Matter h(-1)). Stable compost permitted to achieve an almost complete degradation of pyrene in a short time (10 days). Results indicated that compost stability is a key parameter to optimize PAHs biodegradation. A factor analysis indicated that the optimal conditions for bioremediation after 10, 20 and 30 days of process were (1.4, 0.78, 1:1.4), (1.4, 2.18. 1:1.3) and (1.3, 2.18, 1:1.3) for concentration (g/kg), compost stability (mg O2 g(-1) Organic Matter h(-1)) and soil:compost mixing ratio, respectively.
Collapse
Affiliation(s)
- Tahseen Sayara
- Department of Chemical Engineering, Escola Tècnica Superior d'Enginyeria, Edifici Q, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola, 08193, Barcelona, Spain
| | | | | |
Collapse
|
8
|
Cheng KY, Wong JWC. Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil--water system. CHEMOSPHERE 2006; 62:1907-16. [PMID: 16185745 DOI: 10.1016/j.chemosphere.2005.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/24/2005] [Accepted: 07/01/2005] [Indexed: 05/04/2023]
Abstract
Batch experiments were performed to examine the desorption behavior of phenanthrene and pyrene in soil-water system in the presence of nonionic surfactant Tween 80 and dissolved organic matter (DOM) derived from pig manure or pig manure compost. Addition of 150 mgl(-1) Tween 80 desorbed 5.8% and 2.1% of phenanthrene and pyrene from soil into aqueous phase, respectively, while the addition of both Tween 80 and DOM derived from pig manure compost and pig manure could further enhance the desorption of phenanthrene to 15.8% and 16.2%, respectively, and 6.4% and 10.9%, respectively, for pyrene. In addition, our finding also suggested that subsequent addition of Tween 80 into the soil-water system could further enhance PAHs desorption. The enhancement effect of the co-existence of Tween 80 and DOM was more than the additive effect of the Tween 80 and DOM individually. It is likely that the formation of DOM-surfactant complex in the soil-water system may be a possible reason to explain such desorption enhancement phenomenon. Therefore, it is anticipated that the coexistence of both Tween 80 and DOM derived from pig manure or pig manure compost in soil environment will enhance the bioavailability of PAHs as well as other hydrophobic organic contaminants (HOCs) by enhancing the desorption during remediation process.
Collapse
Affiliation(s)
- K Y Cheng
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | | |
Collapse
|