1
|
Removal of Pathogens in Onsite Wastewater Treatment Systems: A Review of Design Considerations and Influencing Factors. WATER 2021. [DOI: 10.3390/w13091190] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conventional onsite wastewater treatment systems (OWTSs) could potentially contribute to the transmission of infectious diseases caused by waterborne pathogenic microorganisms and become an important human health concern, especially in the areas where OWTSs are used as the major wastewater treatment units. Although previous studies suggested the OWTSs could reduce chemical pollutants as well as effectively reducing microbial contaminants from onsite wastewater, the microbiological quality of effluents and the factors potentially affecting the removal are still understudied. Therefore, the design and optimization of pathogen removal performance necessitate a better mechanistic understanding of the hydrological, geochemical, and biological processes controlling the water quality in OWTSs. To fill the knowledge gaps, the sources of pathogens and common pathogenic indicators, along with their major removal mechanisms in OWTSs were discussed. This review evaluated the effectiveness of pathogen removal in state-of-art OWTSs and investigated the contributing factors for efficient pathogen removal (e.g., system configurations, filter materials, environmental and operational conditions), with the aim to guide the future design for optimized treatment performance.
Collapse
|
2
|
Nguyen XC, Tran TCP, Hoang VH, Nguyen TP, Chang SW, Nguyen DD, Guo W, Kumar A, La DD, Bach QV. Combined biochar vertical flow and free-water surface constructed wetland system for dormitory sewage treatment and reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136404. [PMID: 32019008 DOI: 10.1016/j.scitotenv.2019.136404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
A two-stage treatment system that included vertical flow (VF) and free-water surface (FWS) constructed wetlands was investigated for the dual purposes of sewage treatment and reuse. The VF included four layers (biochar, sand, gravel, and sandy soil), and the FWS was installed after the VF and used as a polishing tank. Two types of local plants, namely Colocasia esculenta and Canna indica, were planted in the VF and FWS, respectively. The system operated for approximately six months, and the experimental period was categorized into four stages that corresponded to changes in the hydraulic loading rate (HLR) (0.02-0.12 m/d). The removal efficiencies for total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen demand (BOD5), ammonia (NH4-N), and total coliform (Tcol) were 71 ± 11%, 73 ± 13%, 79 ± 11%, 91 ± 3%, and 70 ± 20%, respectively. At HLRs of 0.04-0.06 m/d, the COD and BOD5 levels satisfied Vietnam's irrigation standards, with removable rates of 64% and 88%, respectively, and the TSS and Tcol levels satisfied Vietnam's standards for potable water. Furthermore, the NO3-N levels satisfied the reuse limits, whereas the NH4-N levels exceeded the reuse standards. At high HLRs (e.g., 0.12 m/d), all the effluent parameters, except Tcol and NO3-N, exceeded the standards.
Collapse
Affiliation(s)
- X Cuong Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
| | - T C Phuong Tran
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Campus, Vietnam
| | - V Hoan Hoang
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Campus, Vietnam
| | - T Phuong Nguyen
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Campus, Vietnam
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, Republic of Korea; Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, India
| | - Duong Duc La
- Institute of Chemistry and Materials, Hanoi, Vietnam
| | - Quang-Vu Bach
- Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
3
|
Alufasi R, Gere J, Chakauya E, Lebea P, Parawira W, Chingwaru W. Mechanisms of pathogen removal by macrophytes in constructed wetlands. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/21622515.2017.1325940] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Richwell Alufasi
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Jephris Gere
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Ereck Chakauya
- Council for Scientific and Industrial Research (CSIR), Biosciences, Pretoria, South Africa
| | - Phiyani Lebea
- Council for Scientific and Industrial Research (CSIR), Biosciences, Pretoria, South Africa
| | - Wilson Parawira
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Walter Chingwaru
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, Bindura, Zimbabwe
| |
Collapse
|
4
|
Wu S, Carvalho PN, Müller JA, Manoj VR, Dong R. Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:8-22. [PMID: 26398446 DOI: 10.1016/j.scitotenv.2015.09.047] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 05/25/2023]
Abstract
Removal of human pathogens from wastewater is a critical factor with linkage to human health. Constructed Wetlands (CWs) are environmental friendly ecosystems that are applicable not only for chemical pollution control, but also for the reduction of pathogens from wastewater. Yet the knowledge on the fate and removal of such indicator bacteria in CWs is still not sufficient due to the complexity of removal mechanisms and influencing factors. This review serves to provide a better understanding of this state-of-the-art technology, which is necessary for further investigations and design development. The fecal indicator bacteria in CWs mainly come from three sources, namely, influent wastewaters, regrowth within the CWs, and animal activities. The properties of microbial contamination vary depending on the different sources. The removal of pathogens is a complex process that is influenced by operational parameters such as hydraulic regime and retention time, vegetation, seasonal fluctuation, and water composition. The most frequent and well-validated removal mechanisms include natural die-off due to starvation or predation, sedimentation and filtration, and adsorption. The concentration of the main fecal indicator bacteria in the effluent was found to be exponentially related to the loading rate. Generally, horizontal subsurface flow CWs have better reduction capacity than free water surface flow CWs, and hybrid wetland systems were found to be the most efficient due to a longer retention time. Further improvement of fecal indicator bacteria removal in CWs is needed, however, levels in CW effluents are still higher than most of the regulation standards for reuse.
Collapse
Affiliation(s)
- Shubiao Wu
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China.
| | - Pedro N Carvalho
- Department of Bioscience, Aarhus University, 8000C Aarhus, Denmark
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Germany
| | | | - Renjie Dong
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China
| |
Collapse
|
5
|
Recycled Shredded-Tire Chips Used As Support Material in a Constructed Wetland Treating High-Strength Wastewater from a Bakery: Case Study. RECYCLING 2015. [DOI: 10.3390/recycling1010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhu L, Takala J, Hiltunen E, Li Z, Kristianto Y. Comparison of vertical-flow constructed wetlands with and without supplementary aeration treating decentralized domestic wastewater. ENVIRONMENTAL TECHNOLOGY 2013; 34:53-60. [PMID: 23530315 DOI: 10.1080/09593330.2012.679701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Constructed wetlands (CWs) are efficient in reducing excessive contamination from wastewaters. However, oxygen inside CW beds is frequently low especially when substrate clogging problems appear after long-term operation, and this may become a limited factor for the treatment of wastewaters. Aimed at dealing with the issue of a low oxygen content in CW systems, two laboratory-scale vertical-flow constructed wetlands (VFCWs) with and without an aeration device (called VFCW-a and VFCW-c, respectively) were designed in this study to test the contribution of supplementary aeration to the treatment of decentralized domestic wastewater. Results showed that under the intermittent operation of about 45 days, two VFCW units were successfully started up by using activated sludge as seed sludge. Compared to VFCW-c, VFCW-a had a better resistance ability to organic shock loads and its removal function could be effectively recovered within a short period after the introduction of organic shock loads. Under intermittent operation with a 12 h idling time, the ideal hydraulic retention time (HRT) of VFCW-a was 42 h, about 6 h shorter than that of VFCW-c. Likewise, under intermittent operation with 42 h HRT, the ideal idling time of VFCW-a was 12 h, still about 6 h shorter than that of VFCW-c. Under intermittent operation with HRT-42 h and an idling time of 12 h, SS, COD, TN and TP removal efficiencies in VFCW-a could reach 81.2%, 85%, 89.9% and 77.9%, respectively. The VFCW unit with supplementary aeration is an efficient innovation for the treatment of decentralized domestic wastewater.
Collapse
Affiliation(s)
- Liandong Zhu
- Hubei University, Faculty of Resources and Environment, Wuhan, China.
| | | | | | | | | |
Collapse
|
7
|
Steer DN, Fraser LH, Seibert BA. Cell-to-cell pollution reduction effectiveness of subsurface domestic treatment wetlands. BIORESOURCE TECHNOLOGY 2005; 96:969-976. [PMID: 15627569 DOI: 10.1016/j.biortech.2004.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Revised: 07/30/2004] [Accepted: 08/05/2004] [Indexed: 05/24/2023]
Abstract
Quarterly water quality data from 1998 to 2003 for eight single-family domestic systems serving 2-7 people in Ohio, USA, were studied to determine the cell-to-cell and system wide pathogen reduction efficiency and effectiveness of these systems in meeting compliance standards. Two-cell domestic wastewater treatment systems displayed significant variability in their cell-to-cell performance that directly impacted the overall ability of systems to meet effluent compliance standards. Fecal coliform was effectively reduced (approximately 99%) in these systems while two-thirds of the input biochemical oxygen demand was mitigated in each of the cells of these systems. Fecal coliform and biochemical oxygen demand were typically reduced below 2000 counts per 100 ml and 15 mg/l (respectively) before discharge to surface waters. Total suspended solids were reduced by approximately 80% overall with cell one retaining the majority of the solids (approximately 70%). These systems discharged more than 18 mg/l of suspended solids in less than 5% of the samples thus displaying a very high compliance rate. Ammonia and total phosphorus were less effectively treated (approximately 30-40% reductions in each cell) and exceeded standards (1.5 mg/l) more frequently. Analyses based on the number of occupants indicated that the two-cell design used here was most effective for smaller occupancy systems. More study is required to determine the value of this design for large occupancy systems. In the future, wetlands should be evaluated based on the total loads delivered to the watershed rather than by effluent concentrations.
Collapse
Affiliation(s)
- David N Steer
- Geology Department, The University of Akron, Akron, OH 44325-4101, USA.
| | | | | |
Collapse
|